Show simple item record

dc.contributor.authorAldakheel, Mohammed
dc.contributor.supervisorStanislav Glubokovskikhen_US
dc.contributor.supervisorSinem Yavuzen_US
dc.date.accessioned2021-08-03T05:41:26Z
dc.date.available2021-08-03T05:41:26Z
dc.date.issued2020en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/84951
dc.description.abstract

To characterise geological features that control the fluid flow in the subsurface from seismic data, I develop a multi-attribute analysis using an artificial neural network. The network is trained on the plume of CO2 injected into a saline aquifer as part of the CO2CRC Otway Project, using the plume’s time-lapse seismic image as ground truth. The results highlight geological features controlling CO2 flow and guide static and dynamic modelling for future injection.

en_US
dc.publisherCurtin Universityen_US
dc.titleCO2 Storage Characterization Driven by Images of a Prior Injection: CO2CRC's Otway Projecten_US
dc.typeThesisen_US
dcterms.educationLevelMPhilen_US
curtin.departmentWASM: Minerals, Energy and Chemical Engineeringen_US
curtin.accessStatusOpen accessen_US
curtin.facultyScience and Engineeringen_US
curtin.contributor.orcidAldakheel, Mohammed [0000-0002-7182-0044]en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record