Show simple item record

dc.contributor.authorOlivier, Jacques
dc.contributor.supervisorChris Aldrichen_US
dc.contributor.supervisorWan-Quan Liuen_US
dc.date.accessioned2021-10-26T01:27:41Z
dc.date.available2021-10-26T01:27:41Z
dc.date.issued2021en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/86213
dc.description.abstract

This work investigated the application of interpretable machine learning methods for process control in the mineral processing industry. The thesis presents a methodology to extract intelligible rules from grinding circuit data using decision tree algorithms. The rule sets can aid process operators tasked with supervisory control of grinding circuits.

en_US
dc.publisherCurtin Universityen_US
dc.titleRule-based operator decision support for grinding circuit controlen_US
dc.typeThesisen_US
dcterms.educationLevelMPhilen_US
curtin.departmentWASM: Minerals, Energy and Chemical Engineeringen_US
curtin.accessStatusOpen accessen_US
curtin.facultyScience and Engineeringen_US
curtin.contributor.orcidOlivier, Jacques [0000-0002-4837-2175]en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record