Show simple item record

dc.contributor.authorLease, Basil Andy
dc.contributor.supervisorLenin Gopalen_US
dc.contributor.supervisorRaymond Chiongen_US
dc.contributor.supervisorWong Wei Kitten_US
dc.date.accessioned2022-03-14T07:34:00Z
dc.date.available2022-03-14T07:34:00Z
dc.date.issued2022en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/88106
dc.description.abstract

This thesis presents a novel pixel-level weed classification through rotation-invariant uniform local binary pattern (LBP) features for precision weed control. Based on two-level optimisation structure; First, Genetic Algorithm (GA) optimisation to select the best rotation-invariant uniform LBP configurations; Second, Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in the Neural Network (NN) ensemble to select the best combinations of voting weights of the predicted outcome for each classifier. The model obtained 87.9% accuracy in CWFID public benchmark.

en_US
dc.publisherCurtin Universityen_US
dc.titleWeed/Plant Classification Using Evolutionary Optimised Ensemble Based On Local Binary Patternsen_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentCurtin Malaysiaen_US
curtin.accessStatusOpen accessen_US
curtin.facultyCurtin Malaysiaen_US
curtin.contributor.orcidLease, Basil Andy [0000-0001-5469-187X]en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record