Discrete Path Planning for Convex Polyhedra through Edge-Rolling on a Plane
Access Status
Fulltext not available
Date
2022Supervisor
Lei Cui
Ian Howard
Type
Thesis
Award
PhD
Metadata
Show full item recordFaculty
Science and Engineering
School
School of Civil and Mechanical Engineering
Collection
Abstract
This thesis solved the path-planning problem of the Platonic solids and truncated icosahedron through edge-rolling on a plane with obstacle avoidance, which hitherto had not been solved. The BFS-based algorithm found the shortest paths for the Platonic solids on a prescribed plane while the RRT-based algorithm generated feasible paths with efficient tree exploration on a non-prescribed plane. The results can be readily applied to a variety of applications: path planning for general convex polyhedral, dexterous robotic in-hand manipulation, video games, and locomotion of polyhedral tensegrity robots.
Related items
Showing items related by title, author, creator and subject.
-
An, Y.; Xu, C.; Lin, Qun; Loxton, Ryan; Teo, Kok Lay (2013)In this paper, we develop an optimal path planning strategy for under-actuated Dubins micro-robots. Such robots are non-holonomic robots constrained to move along circular paths of fixed curvature clockwise or counter-clockwise. ...
-
Caley, M.; Duncan, Alec (2015)A channel simulation has been developed to explore the fine time-scale Doppler and multi-path arrival-time delay spreading imparted to underwater communication signals by interaction with the transient ocean surface. The ...
-
Rasouli, A.; Rasouli, Vamegh (2012)The rock mass, by nature, includes fractures at different scales, which influence the hydro-mechanical behavior of formation. In many engineering applications the formation is porous, for example, tunneling in sandstone ...