Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Some techniques for the enhancement of electromagnetic data for mineral exploration.

    9460_Sykes full.pdf (12.55Mb)
    Access Status
    Open access
    Authors
    Sykes, Michael P.
    Date
    2000
    Supervisor
    Professor Norm Uren
    Assoc. Professor Umesh Das
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Physical Sciences
    URI
    http://hdl.handle.net/20.500.11937/922
    Collection
    • Curtin Theses
    Abstract

    The usefulness of electromagnetic (EM) methods for mineral exploration is severely restricted by the presence of a conductive overburden. Approximately 80% of the Australian continent is covered by regolith that contains some of the most conductive clays on Earth. As a result, frequency-domain methods are only effective for near surface investigations and time-domain methods, that are capable of deeper exploration, require the measurement of very small, late-time signals. Both methods suffer from the fact that the currents in the conductive Earth layers contribute a large portion of the total measured signal that may mask the signal from a conductive target. In the search for non-layered structures, this form of geological noise is the greatest impediment to the success of EM surveys in conductive terrains. Over the years a range of data acquisition and processing techniques have been used in an effort to enhance the response of the non-layered target and thereby increase the likelihood of its detection.The combined use of a variety of survey configurations to assist exploration and interpretation is not new and is practiced regularly. The active nature of EM exploration means that the measured response is determined to a large degree by the way in which the Earth is energised. Geological structures produce different responses to different stimuli. In this work, two new methods of data combination are used to transform the measured data into a residual quantity that enhances the signature of non-layered geological structures. Based on the concept of data redundancy and tested using the results of numerical modelling, the new combinations greatly increase the signal to noise ratio for targets located in a conductive environment by reducing the layered Earth contribution. The data combinations have application to frequency-domain and time-domain EM surveys and simple interpretive rules can be applied to the residuals to extract geological parameters useful in exploration. The new methods make use of inductive loop sources and can therefore also be applied to airborne surveys.Airborne surveys present special difficulties due to the data acquisition procedures commonly used. Flight-line related artefacts such as herringbones detract from the appearance of maps and make boundary definition more difficult. A new procedure, based on the Radon transform, is used to remove herringbones from airborne EM maps and locate the conductive boundaries correctly, making interpretation more reliable and easier. In addition, selective filtering of the Radon transform data enables the enhancement or attenuation of specific linear features shown in the map to emphasise features of interest. Comparison of the Radon transform procedures with the more conventional Fourier transform methods shaves the Radon transform processing to be more versatile and less prone to distortion of the features in a map.The procedures developed in this work are applied to field data with good results.

    Related items

    Showing items related by title, author, creator and subject.

    • Development and application of processing techniques for signal enhancement using multisystem resistivity measurements
      Kamkar-Rouhani, Abolghasem (1998)
      DC electrical surveying involves the injection of current into the earth, and the measurement of the electrical potential differences this produces. A number of electrode configurations such as the Schlumberger and Wenner ...
    • Advancements in the technique of low fold three dimensional seismic reflection surveying.
      Evans, Brian J. (1996)
      Three dimensional (3-D) seismic reflection surveying is accepted as the preferred method for imaging complex geology for proving and developing commercial oil and gas fields. However, the cost of 3-D seismic recording and ...
    • The use of distributed sensor arrays in electrical and electromagnetic imaging
      Norvill, Margarita L. (2011)
      Electrical methods for exploring the earth, such as direct current resistivity, induced polarization and electromagnetism are used for numerous exploration, engineering and environmental applications. Common to all these ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.