Efficient Semantic Segmentation for Resource-Constrained Applications with Lightweight Neural Networks
Access Status
Open access
Date
2023Supervisor
Aneesh Krishna
Sonny Pham
Type
Thesis
Award
PhD
Metadata
Show full item recordFaculty
Science and Engineering
School
School of Electrical Engineering, Computing and Mathematical Sciences
Collection
Abstract
This thesis focuses on developing lightweight semantic segmentation models tailored for resource-constrained applications, effectively balancing accuracy and computational efficiency. It introduces several novel concepts, including knowledge sharing, dense bottleneck, and feature re-usability, which enhance the feature hierarchy by capturing fine-grained details, long-range dependencies, and diverse geometrical objects within the scene. To achieve precise object localization and improved semantic representations in real-time environments, the thesis introduces multi-stage feature aggregation, feature scaling, and hybrid-path attention methods.
Related items
Showing items related by title, author, creator and subject.
-
Horn, Z.; Auret, L.; McCoy, J.; Aldrich, Chris; Herbst, B. (2017)Image-based soft sensors are of interest in process industries due to their cost-effective and non-intrusive properties. Unlike most multivariate inputs, images are highly dimensional, requiring the use of feature extractors ...
-
Aizam, Nur Aidya Hanum (2013)Timetabling is a table of information showing when certain events are scheduled to take place. Timetabling is in fact very essential in making sure that all events occur in the time and place required. It is critical in ...
-
Tran, The Truyen; Luo, W.; Phung, D.; Gupta, S.; Rana, S.; Kennedy, R.; Larkins, A.; Venkatesh, S. (2014)Background: Feature engineering is a time consuming component of predictive modeling. We propose a versatile platform to automatically extract features for risk prediction, based on a pre-defined and extensible entity ...