Computational modelling of iron-ore mineralisation with stratigraphic permeability anisotropy
Access Status
Open access
Date
2023Supervisor
Victor Calo
Ian Davies
Type
Thesis
Award
PhD
Metadata
Show full item recordFaculty
Science and Engineering
School
School of Civil and Mechanical Engineering
Collection
Abstract
This study develops a computational framework to model fluid transport in sedimentary basins, targeting iron ore deposit formation. It offers a simplified flow model, accounting for geological features and permeability anisotropy as driving factors. A new finite element method lessens computational effort, facilitating robust predictions and cost-effective exploration. This methodology, applicable to other mineral commodities, enhances understanding of genetic models, supporting the search for new mineral deposits amid the global energy transition.
Related items
Showing items related by title, author, creator and subject.
-
Alkroosh, Iyad Salim Jabor (2011)This thesis presents the development of numerical models which are intended to be used to predict the bearing capacity and the load-settlement behaviour of pile foundations embedded in sand and mixed soils. Two artificial ...
-
Amiri, Amirpiran (2013)The alumina industry provides the feedstock for aluminium metal production and contributes to around A$6 billion of Australian exports annually. One of the most energy-intensive parts of alumina production, with a strong ...
-
Fulton, B.; Jones, Tod; Boschetti, F.; Sporcic, M.; De La Mare, W.; Syme, Geoffrey; Dzidic, Peta; Gorton, R.; Little, L.; Dambacher, G.; Chapman, K. (2011)We describe the different types of models we used as part of an effort to inform policy-making aiming at the management of the Ningaloo coast in the Gascoyne region, Western Australia. This provides an overview of how ...