Show simple item record

dc.contributor.authorLiu, Chongyi
dc.contributor.supervisorHonglei Xuen_US
dc.contributor.supervisorXiangyu Wangen_US
dc.date.accessioned2024-05-15T06:50:56Z
dc.date.available2024-05-15T06:50:56Z
dc.date.issued2023en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/95037
dc.description.abstract

The study in this thesis enhances information checking algorithm challenges, such as CAD drawings comliance checking which is time-consuming and error-prone, by focusing on the development and refinement of advanced deep learning algorithms, primarily in the Natural Language Processing (NLP) sphere, as innovative methods for higher accuracy and time-saving solution.

en_US
dc.publisherCurtin Universityen_US
dc.titleAdvanced Deep Learning Methods for Enhancing Information Compliance Checkingen_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Sciencesen_US
curtin.accessStatusOpen accessen_US
curtin.facultyScience and Engineeringen_US
curtin.contributor.orcidLiu, Chongyi [0000-0003-1898-061X]en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record