Show simple item record

dc.contributor.authorJin, Lan Maggie
dc.contributor.supervisorAhmed Abu-Siadaen_US
dc.contributor.supervisorDowon Kimen_US
dc.date.accessioned2024-07-09T02:36:15Z
dc.date.available2024-07-09T02:36:15Z
dc.date.issued2024en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/95487
dc.description.abstract

This research pioneers a comprehensive asset management methodology utilizing solely online dissolved gas analysis. Integrating advanced AI algorithms, the model was trained and rigorously tested on real-world data, demonstrating its efficacy in optimizing asset performance and reliability.

en_US
dc.publisherCurtin Universityen_US
dc.titleReal-time Condition Monitoring and Asset Management of Oil- Immersed Power Transformersen_US
dc.typeThesisen_US
dcterms.educationLevelMPhilen_US
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Sciencesen_US
curtin.accessStatusOpen accessen_US
curtin.facultyScience and Engineeringen_US
curtin.contributor.orcidJin, Lan Maggie [0000-0002-4753-9543]en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record