Show simple item record

dc.contributor.authorAslam, Bilal
dc.contributor.supervisorGoi Chai Lee Goien_US
dc.date.accessioned2024-08-12T03:29:29Z
dc.date.available2024-08-12T03:29:29Z
dc.date.issued2024en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/95690
dc.description.abstract

Selecting stocks from a large number of active stocks is a critical investment decision. In this study, traditional and machine learning techniques are employed to identify promising stocks. The proposed strategies incorporate historical price paths into momentum techniques and remove stocks with extreme returns. It enhances the fundamental investment decision of stock selection to construct optimized portfolios. These methodologies outperform the standard momentum technique, reduces transaction costs and hedges investors during financial crises.

en_US
dc.publisherCurtin Universityen_US
dc.titleMachine Learning for Capital Market Research and Portfolio Optimizationen_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentCurtin Malaysiaen_US
curtin.accessStatusFulltext not availableen_US
curtin.facultyCurtin Malaysiaen_US
curtin.contributor.orcidAslam, Bilal [0000-0001-8098-4908]en_US
dc.date.embargoEnd2026-08-06


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record