Show simple item record

dc.contributor.authorShao, Yanda
dc.contributor.supervisorLing Lien_US
dc.contributor.supervisorJun Lien_US
dc.contributor.supervisorSenjian Anen_US
dc.date.accessioned2024-09-04T04:28:47Z
dc.date.available2024-09-04T04:28:47Z
dc.date.issued2024en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/95823
dc.description.abstract

This dissertation introduces novel monocular vision-based approaches for 3D displacement measurement in civil engineering structures. They enable accurate measurement of 3D displacements using just a static monocular camera. The cornerstone of this innovation lies in the utilization of advanced deep learning neural networks, which have the capability to extract 3D information from a single input image.

en_US
dc.publisherCurtin Universityen_US
dc.titleMonocular Vision-Based Target-free Three-dimensional (3D) Vibration Displacement Measurement for Civil Structuresen_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Sciencesen_US
curtin.accessStatusFulltext not availableen_US
curtin.facultyScience and Engineeringen_US
curtin.contributor.orcidShao, Yanda [0000-0002-6611-5842]en_US
dc.date.embargoEnd2026-08-19


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record