Show simple item record

dc.contributor.authorTjendra, Stephanie Aliana
dc.contributor.supervisorDhanuskodi Rengasamyen_US
dc.contributor.supervisorJobrun Nandongen_US
dc.contributor.supervisorAndrew Brennanen_US
dc.date.accessioned2024-10-23T02:26:04Z
dc.date.available2024-10-23T02:26:04Z
dc.date.issued2024en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96183
dc.description.abstract

The thesis aims to predict precious metal market prices using a deep learning model known as Nonlinear AutoRegressive with eXogenous input. Market forecasts of the 58 assets selected are evaluated through portfolio techniques such as Mean-Variance and Conditional Value-at-Risk to demonstrate the real-world application. This investigation provides a framework for future value projection, including the preprocessing stage, feature selection, and dataset construction. Additionally, a novel error measure is proposed to comprehensively assess the estimation accuracy.

en_US
dc.publisherCurtin Universityen_US
dc.titlePredicting Precious Metal Markets using Custom Deep-Learning NARX Network: A Portfolio Applicationen_US
dc.typeThesisen_US
dcterms.educationLevelMPhilen_US
curtin.departmentCurtin Malaysiaen_US
curtin.accessStatusFulltext not availableen_US
curtin.facultyCurtin Malaysiaen_US
curtin.contributor.orcidTjendra, Stephanie Aliana [0000-0001-5616-2015]en_US
dc.date.embargoEnd2026-10-15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record