Show simple item record

dc.contributor.authorSpiers, Sandy
dc.contributor.supervisorHoa Buien_US
dc.contributor.supervisorRyan Loxtonen_US
dc.date.accessioned2024-10-30T05:06:38Z
dc.date.available2024-10-30T05:06:38Z
dc.date.issued2024en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96234
dc.description.abstract

This thesis bridges the methodological divide between concave and nonconcave optimisation by adapting cutting plane techniques to nonconcave mixed-integer quadratic programming problems. We introduce the novel concept of directional concavity, asserting the concavity of a quadratic function along specific directions, which enables the use of linear approximations for global optimization. This approach results in efficient exact methods for solving general quadratic programming problems.

en_US
dc.publisherCurtin Universityen_US
dc.titleExact Cutting Plane Methods for Quadratic Programming Problems with Applicationsen_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Sciencesen_US
curtin.accessStatusOpen accessen_US
curtin.facultyScience and Engineeringen_US
curtin.contributor.orcidSpiers, Sandy [0000-0002-0961-0425]en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record