Show simple item record

dc.contributor.authorDas, Mainak
dc.contributor.supervisorChristine Yeoen_US
dc.contributor.supervisorAgus Saptoroen_US
dc.date.accessioned2024-11-13T04:35:48Z
dc.date.available2024-11-13T04:35:48Z
dc.date.issued2024en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/96327
dc.description.abstract

Sarawak's sago flour industry suffers from food fraud using whitening chemicals. This study uses Vis-NIR hyperspectral imaging and machine learning to rapidly detect adulterants. PLSR and PCR models excel in detecting calcium carbonate and alloxan monohydrate, respectively. A novel ensemble-based, nonlinear model was developed to enhance prediction accuracy. This research underscores the potential of hyperspectral imaging and machine learning for sago flour quality control.

en_US
dc.publisherCurtin Universityen_US
dc.titleFormulation of an improved hyperspectral image processing algorithm for food quality monitoringen_US
dc.typeThesisen_US
dcterms.educationLevelMPhilen_US
curtin.departmentCurtin Malaysiaen_US
curtin.accessStatusFulltext not availableen_US
curtin.facultyCurtin Malaysiaen_US
curtin.contributor.orcidDas, Mainak [0000-0002-2742-4503]en_US
dc.date.embargoEnd2026-10-28


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record