Show simple item record

dc.contributor.authorAbdulmutaali, Ahmed
dc.contributor.supervisorChris Aldrichen_US
dc.contributor.supervisorKod Pojtanabuntoengen_US
dc.contributor.supervisorKaterina Lepkovaen_US
dc.date.accessioned2025-07-11T00:46:33Z
dc.date.available2025-07-11T00:46:33Z
dc.date.issued2024en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/98063
dc.description.abstract

The study addresses effectively monitoring and controlling the corrosion process using electrochemical noise analysis in different scenarios. It explores the challenges in feature extraction and analytical methods. It also proposes novel systematic approaches to overcome these challenges using deep learning models such as stochastic neighbour embedding (t-SNE) and principal component analysis (PCA). This work provides a potential quantification analysis method for online corrosion monitoring and control, widely considered the industry standard.

en_US
dc.publisherCurtin Universityen_US
dc.titleDeveloping Real-time Corrosion Monitoring: A Cutting-Edge Fusion of Electrochemical Noise Data and Machine Learning Techniquesen_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentWASM: Minerals, Energy and Chemical Engineeringen_US
curtin.accessStatusFulltext not availableen_US
curtin.facultyScience and Engineeringen_US
dc.date.embargoEnd2027-06-18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record