Show simple item record

dc.contributor.authorXu, Yun (Rachel)
dc.contributor.supervisorGretchen Benedix-Blanden_US
dc.contributor.supervisorVladimir Puzyreven_US
dc.contributor.supervisorChris Eldersen_US
dc.contributor.supervisorRitu Guptaen_US
dc.date.accessioned2025-07-31T03:16:36Z
dc.date.available2025-07-31T03:16:36Z
dc.date.issued2025en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11937/98196
dc.description.abstract

Generative Adversarial Networks are a novel, data-efficient method by which models are trained to learn from a limited amount of labelled data and to generate synthetic data, which reduces the burden of manual annotation. This thesis examines the generative adversarial power of GANs in geoscience, exploring how they can be used to unravel the underlying geological patterns and geostatistical features inherent in the geoscience data.

en_US
dc.publisherCurtin Universityen_US
dc.titleImproving interpretation and modelling techniques in geoscience using deep generative networks (GANs)en_US
dc.typeThesisen_US
dcterms.educationLevelPhDen_US
curtin.departmentSchool of Earth and Planetary Sciencesen_US
curtin.accessStatusOpen accessen_US
curtin.facultyScience and Engineeringen_US
curtin.contributor.orcidXu, Yun (Rachel) [0000-0003-1219-5549]en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record