Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Structural studies of titanyl and zirconyl sulphate hydrates

    188459_English2011.pdf (8.933Mb)
    Access Status
    Open access
    Authors
    English, Phillip Martin
    Date
    2011
    Supervisor
    Prof. Julian Gale
    Dr. Bill Richmond
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    Faculty
    Faculty of Science and Engineering, Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/983
    Collection
    • Curtin Theses
    Abstract

    The aim of this thesis was to use a combination of computer simulations and experimental methods to gain insight into the unknown structure of the material titanyl sulphate dihydrate, TiOSO4*2H2O.Samples of TiOSO4*2H2O, along with TiOSO4*H2O, were produced and analysed using X-ray and neutron diffraction at both laboratory and synchrotron facilities. Both ex-situ and in-situ experiments were performed in order to analyse both the structure and growth of the crystals. The diffraction data resulting from these experiments was then used in various structure determination programs. A unit cell was able to be determined from the synchrotron X-ray diffraction patterns, and the first neutron diffraction pattern of a TiOSO4*2D2O sample was produced. In-situ synchrotron X-ray diffraction studies showed that the formation of the crystals followed a single step process, and indicated the possibility of meta-stable phases being present in the sample.In parallel with the experimental studies, computer modelling was used to develop and create candidate TiOSO4*2H2O structures. Initially both forcefield and first principles techniques were validated against a series of test cases. These included the first such calculations for the TiOSO4 and TiOSO4*H2O structures. The candidate structures of TiOSO4*2H2O thus produced were then used as input into the structural determination step.Structure determination was attempted with multiple approaches, using the determined unit cell and a variety of space group settings. Despite a thorough treatment and validation of the method using the diffraction data and known structure of TiOSO4*H2O, the structure was unable to be solved. However, structural motifs consistent with a layered, needle-like morphology, as observed in experimental studies, were commonly found to be present in solutions offered by these approaches. Future use of techniques such as the substitution of isotopic titanium in neutron diffraction may provide enough information to more accurately determine atomic positions.

    Related items

    Showing items related by title, author, creator and subject.

    • Determination of the structure of y-alumina using empirical and first principle calculations combined with supporting experiments
      Paglia, Gianluca (2004)
      Aluminas have had some form of chemical and industrial use throughout history. For little over a century corundum (α-Al2O3) has been the most widely used and known of the aluminas. The emerging metastable aluminas, including ...
    • X-ray and neutron scattering of multiferroic LuFe2O4
      Lawrence, Shane Michael (2011)
      Multiferroic materials have recently begun to attract significant scientific interest due to their potential applications in the design of modern electronic devices. Currently, the magnetic properties of materials form ...
    • Molecular modelling of the interactions of complex carbohydrates with proteins
      Gandhi, Neha Sureshchandra (2011)
      Glycosaminoglycans (GAGs) are ubiquitous complex carbohydrate molecules present on the cell surfaces and in extracellular matrices (ECM) of vertebrate and invertebrate tissues. The interactions of sulphated GAGs such as ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.