Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane

    Access Status
    Fulltext not available
    Authors
    Wang, W.
    Ran, R.
    Shao, Zongping
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, W. and Ran, R. and Shao, Z. 2011. Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. Journal of Power Sources. 196 (1): pp. 90-97.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2010.07.033
    ISSN
    0378-7753
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/10540
    Collection
    • Curtin Research Publications
    Abstract

    Ni-Al2O3 catalyst is modified with Li 2O3, La2O3 and CaO promoters to improve its resistance to coking. These catalysts are used as the materials of the anode catalyst layer in solid-oxide fuel cells operating on methane. Their catalytic activity for the partial oxidation, steam reforming and CO2 reforming of methane at 600-850 °C is investigated. Their catalytic stability and carbon deposition properties are also studied. The LiLaNi-Al 2O3 catalyst shows a catalytic activity that is comparable to those of LaNi-Al2O3 and LiNi-Al2O 3 catalysts for all three reactions. However, it displays a higher catalytic activity than those of CaLaNi-Al2O3 and CaNi-Al2O3 catalysts. Among the various catalysts, the LiLaNi-Al2O3 catalyst presents the highest catalytic stability. O2-TPO profiles indicate that the modification of the Ni-Al2O3 catalyst with Li and La greatly reduces carbon deposition under pure methane atmosphere. The LiLaNi-Al2O3 catalyst is applied as the anode functional layer of a Ni + ScSZ anode-supported fuel cell. The cell is operated on methane-O2, methane-H2O or methane-CO2 gas mixtures and yields peak power densities of 538, 532 and 529 mW cm-2 at 850 °C, respectively, comparable to that of hydrogen fuel. In sum, the LiLaNi-Al 2O3 is highly promising as a highly coking resistant catalyst layer for solid-oxide fuel cells.

    Related items

    Showing items related by title, author, creator and subject.

    • In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
      Chang, H.; Chen, H.; Shao, Zongping; Shi, J.; Bai, J.; Li, S. (2016)
      © 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni ...
    • Physically mixed LiLaNi-Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation
      Wang, W.; Su, C.; Ran, R.; Park, H.; Kwak, C.; Shao, Zongping (2011)
      Different concentrations of copper are added to LiLaNi-Al2O 3 to improve the electronic conductivity property for application as the materials of the anode catalyst layer for solid oxide fuel cells operating on methane. ...
    • Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane
      Wang, W.; Ran, R.; Shao, Zongping (2011)
      Ru-Al2O3 composites with varied Ru contents were synthesized by a glycine-nitrate combustion technique. Their potential application as anode catalyst functional layer of a solid-oxide fuel cell operating on methane fuel ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.