Hydrogen absorption kinetics and structural features of NaA1H4 enhanced with transition meal-and Ti-based nanoparticles
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
The hydrogen cycled (H) planetary milled (PM) NaAlH4 + xM (x < 0.1) system (M = 30 nm Ag, 80 nm Al, 2–3 nm C, 30 nm Cr, 25 nm Fe, 30 nm Ni, 25 nm Pd, 65 nm Ti) has been studied by high resolution synchrotron powder X-ray diffraction. Isothermal absorption kinetic isotherms have been measured over the first two H cycles. The PM NaAlH4 + 0.1Ti system has also been studied by high resolution transmission electron microscopy (TEM). 80 nm Al and 2–3 nm C were inactive, and would not allow hydrogen (H) desorption from NaAlH4. 30 nm Cr, 25 nm Fe, 30 nm Ni, and 25 nm Pd showed activity, but with weak kinetics of only ca. 1 wt.% H/hour. The NaAlH4 + 0.1Ti system displays absorption kinetics of ca. 7 wt.% H/hour, comparable to TiCl3 enhanced NaAlH4 after five H cycles. After H cycling the PM NaAlH4 + 0.1Ti system, we observe a body centred tetragonal (bct) χ-TiH2 phase, which displays intense anisotropic peak broadening. The broadening is evident as a massive dislocation density of ca. 1.20 × 1017/m2 in high resolution TEM images of the χ-TiH2 phase. All originally added Ti can be accounted for in the bct χ-TiH2 phase by quantitative phase analysis (QPA) after five H cycles. The PM NaH + Al + 0.02 (Ti-nano-alloy) system shows absorption kinetic rates in the order TiO2 > TiN > TiC > Ti, with rapid hydrogenation kinetics of ca. 23 wt.% H/hour for TiO2 enhanced NaAlH4, equivalent to TiCl3 enhanced NaAlH4. The TiN and TiC are partially reduced by ca. 7 and 22% respectively, and the TiO2 is completely reduced. The location of the reduced Ti cannot be discerned by X-ray diffraction at these minor proportions.
Related items
Showing items related by title, author, creator and subject.
-
Pitt, M.; Vullum, P.; Sørby, M.; Emerich, H.; Paskevicius, Mark; Buckley, Craig; Walmsley, J.; Holmestad, R.; Hauback, B. (2012)This study elucidates the role of transition metal (TM) additives in enhancing hydrogen (H) reversibility and hydrogenation kinetics for the NaAlH4 system. The isothermal hydrogen absorption kinetics of the planetary ...
-
Pitt, M; Vullum, P; Sorby, M; Emerich, H; Paskevicius, Mark; Buckley, Craig; Gray, E; Walmsley, J; Holmestad, R; Hauback, B (2012)The hydrogen (H) cycled planetary milled (PM) NaAlH4 + 0.02TiCl3 system has been studied by high resolution synchrotron X-ray diffraction and transmission electron microscopy during the first 10 H cycles. After the first ...
-
Sheppard, Drew; Jepsen, L.; Jensen, T.; Paskevicius, Mark; Buckley, Craig (2013)Aluminium sulphide (Al2S3) is predicted to effectively destabilise sodium aluminium hydride (NaAlH4) in a single-step endothermic hydrogen release reaction. The experimental results show unexpectedly complex desorption ...