Constraining kinematic rotation axes in high-strain zones: A potential microstructural method
Access Status
Authors
Date
2005Type
Metadata
Show full item recordCitation
Source Title
Faculty
Remarks
Copyright 2005 The Geological Society of London
This material has been published in Gapais, D. and Brun, J.P. and Cobbold, P.R. (ed), Deformation Mechanisms, Rheology and Tectonics: from minerals to lithosphere: Geological Society Special Publication, 243 Chapter 18, pp. 1-10. Geological Society, London, the only definitive repository of the content that has been certified and accepted after peer review.
Copyright and all rights therein are retained by The Geological Society of London.
Collection
Abstract
The correct determination of the kinematic rotation axis (vorticity) in high-strain zones is essential to the study of the tectonic evolution of the Earth's crust. Commonly the shear direction in high-strain zones is assumed to be parallel to mineral stretching lineations, that indicate the orientation of maximum finite stretch. However, during general shear deformation, where maximum finite stretch may lie oblique to the shear direction, the use of mineral stretching lineations to constrain shear directions may be invalid. In these situations, constraining the kinematic rotation axis of the deformation may be difficult. Electron backscatter diffraction data from calcite deformed in the high-strain Gressoney Shear Zone of the Western Alps, demonstrates a strong geometrical coincidence amongst the bulk macroscopic kinematic rotation axes, the orientation of misorientation axes associated with low-angle boundaries at the intergrain scale and rotation axes associated with crystallographic dispersion at the intragrain scale. These data suggest a geometric control of the kinematic framework of the high strain zone on the activity of crystal slip systems in calcite. It is proposed that this relationship can be exploited as a new tool to determine the orientation of bulk kinematic rotation axes in high-strain zones independent of mineral stretching lineations. Application of the approach could lead to a significant advance in our understanding of natural general shear deformation.
Related items
Showing items related by title, author, creator and subject.
-
Collins, Alan; Fitzsimons, Ian; Hulscher, B.; Razakamanana, T. (2003)The island of Madagascar straddles the poorly understood eastern margin of the East African Orogen, which is characterised by a high-grade gneissic basement that was structurally and thermally reworked during the ...
-
Reddy, Steven; Occhipinti, Sandra (2004)Detailed structural mapping of a the Kerba Fault, a high-strain zone along the contact between the Archaean to Palaeoproterozoic Yarlarweelor Gneiss Complex (partly derived from the Yilgarn Craton) and the Palaeoproterozoic ...
-
Kaczmarek, Mary-Alix; Reddy, Steven; Timms, Nicholas Eric (2011)Magmatic zircons within two sheared gabbroic dykes from the peridotitic massif of Lanzo (Western-Alps, Italy) revealed evolution of deformation from crystal plasticity to rigid body rotation during shear zone evolution. ...