Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination

    Access Status
    Fulltext not available
    Authors
    Wang, X.
    Wilde, Simon
    Xu, B.
    Pang, C.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, X. and Wilde, S. and Xu, B. and Pang, C. 2015. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos. 261: pp. 5-45.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2015.12.014
    ISSN
    0024-4937
    School
    Department of Applied Geology
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/FT140100826
    URI
    http://hdl.handle.net/20.500.11937/11546
    Collection
    • Curtin Research Publications
    Abstract

    © 2015 Elsevier B.V. Continental basalts generally display enrichment of fluid-mobile elements and depletion of high-field-strength elements, similar to those that evolved in the subduction environment, but different from oceanic basalts. Based on the continental flood basalt database for six large igneous provinces, together with rift-related basalt data from the Basin and Range Province, this study aimed to test the validity of geochemical tectonic discrimination diagrams in distinguishing arc-like intra-continental basalts from arc basalts and to further investigate the role of deep-Earth water cycling in producing arc-like signatures in large-scale intra-continental basalts. Our evaluation shows that arc-like intra-continental basalts can be distinguished from arc basalts by integrating the following factors: (1) the FeO, MgO, and Al2O3 concentrations of the primary melt; (2) TiV, ZrZr/Y, ZrTi, and Ti/VZr/SmSr/Nd discrimination diagrams; (3) the coexistence of arc-like and OIB-like subtype basalts within the same province; (4) primitive mantle-normalized trace element distribution patterns. The similarity of enrichment in fluid-mobile elements (Ba, Rb, Sr, U, and K) between arc-like and true arc basalts suggests the importance of water flux melting in producing arc-like signatures in continental basalts. Experimentally determined liquid lines of descent (LLD) imply high magma water concentrations for continental flood basalts (CFBs) and the Basin and Range basalts. Furthermore, estimates based on the Al2O3-LLD method indicates 4.0-5.0wt% pre-eruptive magma H2O concentration for CFBs and the Basin and Range basalts. The tight relationships between H2O/Ce and Ba/La, Ba/Nb and Rb/Nb based on global arc basalt data were further used to estimate the primary H2O concentrations. With the exception of the Emeishan CFBs (mainly containing 4.0-5.6wt% H2O), all other CFBs investigated have similar estimated primary H2O contents, with values ranging from 1.0 to 2.0wt%. The estimated primary H2O content of the Basin and Range basalts is extremely high and up to 10.0wt%. Thus, this study demonstrates that water flux melting played an important role in the generation of many intra-continental igneous provinces. This new finding was further employed to investigate the tectonic setting of 320-270Ma basalts in Inner Mongolia, North China. Most basalts from three key rock units (i.e. Amushan, Benbatu, and Dashizhai formations) from the Central Asian Orogenic belt are classified as non-arc types. The estimated magma H2O concentrations suggest a strong link between H2O content and arc-like geochemical signatures. Together with established geological evidence, we proposed that these 320-270Ma basaltic rocks were most likely produced in a post-orogenic extensional environment facilitated by subducted slab-driven deep-Earth fluid cycling. We propose a mantle transition zone water-filtering model that links deep-Earth fluid cycling, large-scale intra-continental basaltic magmatism, and supercontinent cycles into a self-organized system.

    Related items

    Showing items related by title, author, creator and subject.

    • Hydrous parental magmas of Early to Middle Permian gabbroic intrusions in western Inner Mongolia, North China: New constraints on deep-Earth fluid cycling in the Central Asian Orogenic Belt
      Pang, C.; Wang, Xuan-Ce; Xu, B.; Luo, Z.; Liu, Y. (2017)
      The role of fluids in the formation of the Permian-aged Xigedan and Mandula gabbroic intrusions in western Inner Mongolia was significant to the evolution of the Xing'an Mongolia Orogenic Belt (XMOB), and the active ...
    • Primary hydrous minerals from the Karoo LIP magmas: Evidence for a hydrated source component
      Ware, Bryant; Jourdan, Fred; Tohver, E.; Fernandes, K.; Chiaradia, M. (2018)
      © 2018 Elsevier B.V. Large Igneous Provinces mark important and consequential events that span almost the entirety of the Earth's history. These punctuated geologically significant events that include earth processes from ...
    • Petrogenesis of Late Carboniferous gabbroic intrusions in the Xilinhot region of Inner Mongolia: Products of partial melting of a hydrous mantle source in an intracontinental extensional setting
      Pang, C.; Wang, X.; Wen, S.; Krapez, Bryan; Wang, Y.; Liao, W. (2018)
      The petrogenesis and geodynamic setting of Late Carboniferous magmatism in Inner Mongolia, China, hold a key to understanding the final closure of the Paleo-Asian Ocean and formation of the Xing' an-Inner Mongolia Orogenic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.