Biochar as a Fuel: 2. Significant Differences in Fuel Quality and Ash Properties of Biochars from Various Biomass Components of Mallee Trees
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This study shows the significant differences in the fuel quality and ash properties of biochars produced from the slow pyrolysis of various biomass components (leaf, wood, and bark). The objective is to identify which component is likely to cause problems in subsequent utilization processes if biochar produced from various components of mallee trees is used as a fuel. It is found that the pyrolysis of different biomass components produced biochars with distinct characteristics, largely because of the differences in the biological structure of these components. Leaf biochar showed the poorest grindability, possibly because of the presence of abundant tough oil glands in leaf. Even for the biochar prepared from the pyrolysis of leaf at 800 °C, the oil gland enclosures remained largely intact after grinding. Biochars produced from leaf, bark, and wood components also have significant differences in ash properties. Even with low ash content, wood biochars have low Si/K and Ca/K ratios, suggesting that these biochars may have a high slagging propensity, in comparison to bark and leaf biochars. It appears that, in the utilization of biochar prepared from mallee biomass, the grindability is likely to be limited by the leaf fraction while ash-related problems could be due to the wood and bark components.
Related items
Showing items related by title, author, creator and subject.
-
Abdullah, Hanisom binti (2010)Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon ...
-
Yip, Kong; Tian, Fujun; Hayashi, J.; Wu, Hongwei (2010)Biochars were prepared from the pyrolysis of the wood, leaf, and bark components of mallee biomass in a fixed-bed reactor at 750 °C. The results show that the volatilization of inherent alkali and alkaline earth metallic ...
-
Yip, Kong; Li, Chun-Zhu; Wu, Hongwei (2010)This study reports the removal of inorganic species by water leaching from a Western Australia mallee biomass and its biochars. The study focuses on the removal of AAEM species (Na, K, Ca and Mg) and other nutrient elements ...