Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: Application in a Western Australian water treatment plant

    167382_167382.pdf (121.5Kb)
    Access Status
    Open access
    Authors
    Kristiana, Ina
    Joll, Cynthia
    Heitz, Anna
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kristiana, Ina and Joll, Cynthia and Heitz, Anna. 2011. Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: Application in a Western Australian water treatment plant. Chemosphere. 83 (5): pp. 661-667.
    Source Title
    Chemosphere
    DOI
    10.1016/j.chemosphere.2011.02.017
    ISSN
    00456535
    School
    Department of Applied Chemistry
    Remarks

    NOTICE: this is the author’s version of a work that was accepted for publication in Chemosphere. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemosphere, 83, 5, 2011 DOI 10.1016/j.chemosphere.2011.02.017

    URI
    http://hdl.handle.net/20.500.11937/11925
    Collection
    • Curtin Research Publications
    Abstract

    The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80–95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system.The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Characterization of the Molecular Weight and Reactivity of Natural Organic Matter in Surface Waters
      Kristiana, Ina; Tan, J.; McDonald, Suzanne; Joll, Cynthia; Heitz, Anna (2014)
      Natural organic matter (NOM) can impact on all aspects of water treatments processes. Understanding the physical and chemical characteristics of NOM is essential to improving drinkingwater treatment processes. The size ...
    • Advanced water treatment technologies to minimise the formation of emerging disinfection by-products in potable water
      Nottle, Caroline E. (2013)
      As the international standards for drinking water become more stringent and the health guideline values for currently regulated disinfection by-products (DBPs) decrease, the challenge increases for water utilities to ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.