Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Prediction of Moisture Content of Natural Gases Using Simple Arrhenius-type Function

    Access Status
    Fulltext not available
    Authors
    Bahadori, Alireza
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bahadori, Alireza. 2011. Prediction of Moisture Content of Natural Gases Using Simple Arrhenius-type Function. Central European Journal of Engineering. 1: pp. 81-88.
    Source Title
    Central European Journal of Engineering
    DOI
    10.2478/s13531-011-0011-z
    ISSN
    1896-1541
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/11999
    Collection
    • Curtin Research Publications
    Abstract

    Natural gas extracted from underground reservoirs is saturated with water. The accurate prediction of moisture content in natural gas is extremely important. The presence of water vapor can lead to potentially disastrous consequences. The lifetime of a pipeline is governed by the rate at which corrosion occurs, which is directly linked to the available moisture in the gas resulting in oxidation. In addition, the formation of hydrates due to presence of water in natural gas can lead to safety hazards to production/transportation systems and to substantial economic risks. In this paper, an attempt has been made to develop an easy-to-use Arrhenius-type asymptotic exponential function combined with the Vandermonde matrix to arrive at an appropriate estimation of saturated water content of sour natural gases for pressures up to 69000 kPa and the temperature range between 20 to 180°C. Percent average absolute deviation of the proposed method is found to be around 2%, demonstrating the excellent performance of the developed predictive tool. The tool will be of great practical value for chemical and petroleum engineers to have a quick check on the water content of sour natural gases at various temperatures and pressures without performing any experimental measurements.

    Related items

    Showing items related by title, author, creator and subject.

    • Hydrogeophysical investigation of water recharge into the Gnangara Mound
      Strobach, Elmar (2013)
      Increased demand for freshwater in combination with a drying climate has led to water table decline on the Gnangara Groundwater Mound north of Perth, Western Australia. For sustainable groundwater management, a regional-scale ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths
      Doucet, Luc-Serge; Peslier, A.; Ionov, D.; Brandon, A.; Golovin, A.; Goncharov, A.; Ashchepkov, I. (2014)
      The processes that control water distribution in nominally anhydrous minerals from peridotites are twofold. Melt depletion will remove water while metasomatism can potentially add water to these minerals. These processes ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.