Modification of g-C3N4 with metal oxides for high catalytic degradation of methylene blue and phenol in aqueous solution
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
Source Conference
School
Collection
Abstract
A series of metal doped graphitic carbon nitride (Fe2O3-g-C3N4, Fe3O4-g-C3N4 and MnO2-g-C3N4) photocatalysts were synthesized using a hydrothermal method. The catalytic performances of these materials were evaluated in liquid-phase heterogeneous activation of peroxymonosulfate (PMS) for decomposition of phenol and photocatalytic degradation of methylene blue (MB) under UV-vis light irradiation. Their physicochemical properties were characterized by X-ray diffraction (XRD), UV-vis diffusion reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The experimental results showed that MnO2-g-C3N4 exhibited higher activity than Fe2O3-g-C3N4and Fe3O4-g-C3N4 in photodecomposition of organic compounds in liquid phase. It was found that the physical and optical properties of g-C3N4 have changed upon metal deposition. Manganese ions had a significant effect on the structure and catalytic performance of g-C3N4 and the enhanced photocatalytic activity of MnO2-g-C3N4 can be attributed to the large heterojunction interface and intrinsically layered structure.