An analytical study of PPP-RTK corrections: precision, correlation and user-impact
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
The final publication is available at Springer via http://doi.org/10.1007/s00190-015-0838-9
Collection
Abstract
PPP-RTK extends the PPP concept by providing single-receiver users, next to orbits and clocks, also information about the satellite phase and code biases, thus enabling single-receiver ambiguity resolution. It is the goal of the present contribution to provide an analytical study of the quality of the PPP-RTK corrections as well as of their impact on the user ambiguity resolution performance. We consider the geometry-free and the geometry-based network derived corrections, as well as the impact of network ambiguity resolution on these corrections. Next to the insight that is provided by the analytical solutions, the closed form expressions of the variance matrices also demonstrate how the corrections depend on network parameters such as number of epochs, number of stations, number of satellites, and number of frequencies. As a result we are able to describe in a qualitative sense how the user ambiguity resolution performance is driven by the data from the different network scenarios.
Related items
Showing items related by title, author, creator and subject.
-
Arora, Balwinder Singh (2012)The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
-
El-Mowafy, Ahmed ; Wang, Kan; El-Sayed, Hassan (2022)Integrity monitoring (IM) is a vital task for precise real-time positioning in road transportation, autonomous driving, and drones, where safety is essential. IM has the main tasks of detection and exclusion of faulty ...
-
Odijk, D.; Teunissen, P.; Khodabandeh, Amir (2014)Integer ambiguity resolution enabled Precise (cm-level) Point Positioning (PPP) is feasible if corrections from a GPS network of CORS stations are applied to the single-receiver phase and code data of a user. The concept ...