Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    40Ar/39Ar impact ages and time-temperature argon diffusion history of the Bunburra Rockhole anomalous basaltic achondrite

    212771_212771.pdf (2.415Mb)
    Access Status
    Open access
    Authors
    Jourdan, Fred
    Benedix, Gretchen
    Eraglu, E.
    Bouvier, A.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Jourdan, F. and Benedix, G. and Eraglu, E. and Bouvier, A. 2014. 40Ar/39Ar impact ages and time-temperature argon diffusion history of the Bunburra Rockhole anomalous basaltic achondrite. Geochimica Et Cosmochimica Acta. 140: pp. 391-409.
    Source Title
    Geochimica Et Cosmochimica Acta
    DOI
    10.1016/j.gca.2014.05.039
    ISSN
    00167037
    School
    Department of Applied Geology
    Remarks

    NOTICE: this is the author’s version of a work that was accepted for publication in Geochimica Et Cosmochimica Acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Geochimica Et Cosmochimica Acta, Vol. 140 (2014). DOI: 10.1016/j.gca.2014.05.039

    URI
    http://hdl.handle.net/20.500.11937/12275
    Collection
    • Curtin Research Publications
    Abstract

    The Bunburra Rockhole meteorite is a brecciated anomalous basaltic achondrite containing coarse-, medium- and fine-grained lithologies. Petrographic observations constrain the limited shock pressure to between ca. 10 GPa and 20 GPa. In this study, we carried out nine 40Ar/39Ar step-heating experiments on distinct single-grain fragments extracted from the coarse and fine lithologies. We obtained six plateau ages and three mini-plateau ages. These ages fall into two internally concordant populations with mean ages of 3640 ± 21 Ma (n=7; P=0.53) and 3544 ± 26 Ma (n=2; P=0.54), respectively. Based on these results, additional 40Ar/39Ar data of fusion crust fragments, argon diffusion modeling, and petrographic observations, we conclude that the principal components of the Bunburra Rockhole basaltic achondrite are from a melt rock formed at ~3.64 Ga by a medium to large impact event. The data imply this impact generated high enough energy to completely melt the basaltic target rock and reset the Ar systematics, but only partially reset the Pb-Pb age. We also conclude that a complete 40Ar* resetting of pyroxene and plagioclase at this time could not have been achieved at solid-state conditions. Comparison with a terrestrial analogue (Lonar crater) shows that the time-temperature conditions required to melt basaltic target rocks upon impact are relatively easy to achieve. Ar data also suggest that a second medium-size impact event occurred on a neighboring part of the same target rock at ~3.54 Ga. Concordant low-temperature step ages of the nine aliquots suggest that, at ~3.42 Ga, a third smaller impact excavated parts of the ~3.64 Ga and ~3.54 Ga melt rocks and brought the fragments together. The lack of significant impact activity after 3.5 Ga, as recorded by the Bunburra Rockhole suggest that (1) either the meteorite was ejected in a small secondary parent body where it resided untouched by large impacts, or (2) it was covered by a porous heat-absorbing regolith blanket which, when combined with the diminishing frequency of large impacts in the solar system, protected Bunburra from subsequent major heating events. Finally we note that the total (K/Ar) resetting impact event history recorded by some of the brecciated eucrites (peak at 3.8-3.5 Ga) is similar to the large impact history recorded by the Bunburra Rockhole parent body (ca. 3.64-3.54 Ga; this study) and could indicate a similar position in the asteroid belt at that time.

    Related items

    Showing items related by title, author, creator and subject.

    • Geochemistry and chronology of the bunburra rockhole ungrouped achondrite
      Spivak-Birndorf, L.; Bouvier, A.; Benedix, G.; Hammond, S.; Brennecka, G.; Howard, K.; Rogers, N.; Wadhwa, M.; Bland, Phil; Spurný, P.; Towner, Martin (2015)
      Bunburra Rockhole is a unique basaltic achondrite that has many mineralogical and petrographic characteristics in common with the noncumulate eucrites, but differs in its oxygen isotope composition. Here, we report a study ...
    • Elemental, isotopic and Ar40/39Ar data of the lake Carnegie Eucrite, old homestead 003 Howardite, and anomalous basaltic Achondrite Deakin 010
      Kennedy, T.; Jourdan, F.; Bevan, Alexander; Gee, M.; Downes, P.; Cliff, J.; Frew, A. (2012)
      Introduction: Petrography, electron microprobe major and trace elements, oxygen isotope s and 40 Ar/ 39 Ar thermo-chronometry of a new cumulate eucrite (Lake Carnegie), a brecciated eucrite - like basaltic achondrite ...
    • Bunburra Rockhole: Exploring the geology of a new differentiated asteroid
      Benedix, Gretchen; Bland, Phil; Friedrich, J.; Mittlefehldt, D.; Sanborn, M.; Yin, Q.; Greenwood, R.; Franchi, I.; Bevan, Alexander (2017)
      Bunburra Rockhole is the first recovered meteorite of the Desert Fireball Network. We expanded a bulk chemical study of the Bunburra Rockhole meteorite to include major, minor and trace element analyses, as well as oxygen ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.