Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. “Effectoromics” has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Related items
Showing items related by title, author, creator and subject.
-
Tan, Kar-Chun; Phan, Huyen Phan; Rybak, K.; John, E.; Chooi, Y.; Solomon, P.; Oliver, Richard (2015)Necrotrophic diseases of wheat cause major losses in most wheat growing areas of world. Tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (SNB; Parastagonospora nodorum) have been shown to ...
-
Oliver, Richard; Lichtenzveig, Judith; Tan, Kar-Chun; Waters, O.; Rybak, K.; Lawrence, J.; Friesen, T.; Burgess, P. (2014)Genetic disease resistance is widely assumed, and occasionally proven, to cause host yield or fitness penalties due to inappropriate activation of defence response mechanisms or diversion of resources to surplus preformed ...
-
Tan, Kar-Chun; Waters, O.; Rybak, K.; Antoni, E.; Furuki, E.; Oliver, Richard (2013)Parastagonospora nodorum is a major fungal pathogen of wheat in Australia causing septoria nodorum blotch (SNB). P. nodorum virulence is quantitative and depends to a large extent on multiple effector-host sensitivity ...