Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 exposure

    Access Status
    Fulltext not available
    Authors
    Tan, X.
    Liu, N.
    Meng, B.
    Sunarso, J.
    Zhang, K
    Liu, Shaomin
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tan, X. and Liu, N. and Meng, B. and Sunarso, J. and Zhang, K. and Liu, S. 2012. Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 exposure. Journal of Membrane Science. 389: pp. 216-222.
    Source Title
    Journal of Membrane Science
    DOI
    10.1016/j.memsci.2011.10.032
    ISSN
    03767388
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/12408
    Collection
    • Curtin Research Publications
    Abstract

    La0.6Sr0.4Co0.8Fe0.2O3-a (LSCF) hollow fibre membranes with an asymmetric structure consisting of a central porous layer and two dense surface layers were prepared using a mixture of 50% ethanol + 50% NMP as the internal coagulant. Using the resultant hollow fibre, the influence of CO2 as the sweep gas on the oxygen permeation behavior of the LSCF membranes has been investigated. The membranes before and after permeation test were characterized by XRD, SEM and EDX. The oxygen permeation fluxes of the LSCF membrane decreased with increasing the CO2 concentration in sweep gas. The significant poisoning effect of CO2 on the oxygen permeation through the LSCF perovskite membranes was mainly due to the chemical adsorption of CO2 to the membrane surface with a result that the oxygen vacancy sites were occupied by the oxygen atoms of CO2. The reaction between the LSCF membrane material and the adsorbed CO2 to form carbonates caused Sr segregation and corrosion on the membrane surface during the permeation process. Operated in pure CO2 as sweep gas for more than 100 h at 900 °C or above, the LSCF hollow fibre still displayed a stable performance. Although some areas of the membrane have been etched with a thickness about 1.4 µm, no sign of membrane collapsing or failure exists.

    Related items

    Showing items related by title, author, creator and subject.

    • La0.6Sr0.4Co0.2Fe0.8O3-d Hollow Fibre Membrane Performance Improvement by Coating of Ba0.5Sr0.5Co0.9Nb0.1O3-d Porous Layer
      Han, D.; Wu, J.; Yan, Z.; Zhang, K.; Liu, Jian; Liu, Shaomin (2014)
      The oxygen permeation performance of perovskite La0.6Sr0.4Co0.2Fe0.8O3d (LSCF) hollow fibremembranes was enhanced by surface modification via coating of a Ba0.5Sr0.5Co0.9Nb0.1O3d (BSCN) porous layer. The hollow fibres ...
    • Enhanced Oxygen Permeation of Pt-modified La0.6Sr0.4Co0.2Fe0.8O3-[alpha] Hollow Fibre Membranes
      Han, D.; Tan, X.; Yan, Z.; Liu, Shaomin (2012)
      Perovskite La0.6Sr0.4Co0.2Fe0.8O3-α (LSCF) hollow fibre membranes were fabricated by a combined phase inversion and sintering technique. The prepared membrane possessed a novel structure consisting of only one thin dense ...
    • Highly stable La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibre membrane for air separation swept by steam or steam mixture
      Wang, R.; Meng, B.; Meng, X.; Tan, X.; Sunarso, J.; Liu, L.; Liu, Shaomin (2015)
      Perovskite oxide ceramic membranes have the potentials for industrial oxygen production, particularly to replace the conventional expensive air separation units, which is of significance to improve the viability of the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.