Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In one tube pass and one shell pass counter-flow heat exchangers, when both streams change temperature by different amounts, the effectiveness is defined as the temperature change for the stream with lower capacity divided by the maximum possible change and the effectiveness depends on the number of transfer units and the thermal capacity ratio. In this paper, an attempt has been made to formulate a simple-to-use method which is easier than existing approaches, less complicated and with fewer computations for accurate and rapid estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers as a function of number of transfer units and the thermal capacity ratio. The proposed method permits estimating the exit temperature for a one tube pass and one shell pass counter-flow heat exchanger without a trial-and-error calculation. The average absolute deviations between the reported data and the proposed correlations are found to be less than 2% demonstrating the excellent performance of proposed correlation. The tool developed in this study can be of immense practical value for engineers and scientists to have a quick check on the effectiveness in one tube pass and one shell pass counter-flow heat exchangers at various conditions without opting for any experimental measurements. In particular, practice engineers would find the predictive tool to be user-friendly with transparent calculations involving no complex expressions.
Related items
Showing items related by title, author, creator and subject.
-
Abishek, Sridhar; King, Andrew; Narayanaswamy, Ramesh (2017)A computational study is carried out to compare the two-phase flow and heat transfer characteristics of a double-pipe evaporator operating under parallel and counter flow configurations for use in waste heat recovery and ...
-
Law, M.; Lee, Vincent; Tay, C. (2015)© 2015 Elsevier Ltd. All rights reserved. A three-dimensional (3-D), dynamic model of a molten carbonate fuel cell (MCFC) is developed in the current work. The model takes into account the heat and mass transfers of various ...
-
Tay, C.; Law, Ming (2014)The modelling of a three-dimensional (3-D) molten carbonate fuel cell (MCFC) was developed to study the effects of gas flow direction (co-flow and counter-flow) in anode and cathode on the generated power density by solving ...