Show simple item record

dc.contributor.authorAmankwah, A.
dc.contributor.authorAldrich, Chris
dc.date.accessioned2017-01-30T11:32:14Z
dc.date.available2017-01-30T11:32:14Z
dc.date.created2016-05-01T19:30:28Z
dc.date.issued2015
dc.identifier.citationAmankwah, A. and Aldrich, C. 2015. Motion estimation in flotation froth using the Kalman filter, pp. 1897-1900.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/12690
dc.identifier.doi10.1109/IGARSS.2015.7326164
dc.description.abstract

© 2015 IEEE. Machine vision systems have been used to monitor mineral froth flotation systems since the 1990s and their ability to track key performance indicators of the systems online is critical to improved plant operation. One of the challenges faces by these computer vision systems, is estimation of the motion of the froth, which is hindered by the simultaneous deformation, bursting and merging of bubbles. In this paper, we propose a block based motion estimation method using Kalman filtering to improve the motion vector estimates resulting from the new-three-step-search technique. Experimental results derived from flotation froth video sequences are presented.

dc.titleMotion estimation in flotation froth using the Kalman filter
dc.typeConference Paper
dcterms.source.volume2015-November
dcterms.source.startPage1897
dcterms.source.endPage1900
dcterms.source.titleInternational Geoscience and Remote Sensing Symposium (IGARSS)
dcterms.source.seriesInternational Geoscience and Remote Sensing Symposium (IGARSS)
dcterms.source.isbn9781479979295
curtin.departmentDept of Mining Eng & Metallurgical Eng
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record