The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data
Access Status
Authors
Date
2000Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Remarks
Copyright © 2000 John Wiley & Sons, Ltd.
Collection
Abstract
Observations of gravity can be aliased by virtue of the logistics involved in collecting these data in the field. For instance, gravity measurements are often made in more accessible lowland areas where there are roads and tracks, thus omitting areas of higher relief in between. The gravimetric determination of the geoid requires mean terrain-corrected free-air anomalies; however, anomalies based only on the observations in lowland regions are not necessarily representative of the true mean value over the topography. A five-stage approach is taken that uses a digital elevation model, which provides a more accurate representation of the topography than the gravity observation elevations, to reduce the unrepresentative sampling in the gravity observations. When using this approach with the Australian digital elevation model, the terrain-corrected free-air anomalies generated from the Australian gravity data base change by between 77.075 and -84.335 mgal (-0.193 mgal mean and 2.687 mgal standard deviation). Subsequent gravimetric geoid computations are used to illustrate the effect of aliasing in the Australian gravity data upon the geoid. The difference between 'aliased' and 'non-aliased' gravimetric geoid solutions varies by between 0.732 and -1.816 m (-0.058 m mean and 0.122 m standard deviation). Based on these conceptual arguments and numerical results, it is recommended that supplementary digital elevation information be included during the estimation of mean gravity anomalies prior to the computation of a gravimetric geoid model.
Related items
Showing items related by title, author, creator and subject.
-
Amos, Matthew (2007)One goal of modern geodesy is the global unification of vertical datums so that height data from them can be properly integrated. This thesis studies the unification of the 13 disparate levelling- and tide-gauge-based ...
-
Zhang, Kefei (1997)A new, high resolution, high precision and accuracy gravimetric geoid of Australia has been produced using updated data, theory and computational methodologies. The fast Fourier transform technique is applied to the ...
-
Hwang, C.; Hsu, H.J.; Featherstone, Will ; Cheng, C.C.; Yang, M.; Huang, W.; Wang, C.Y.; Huang, J.F.; Chen, K.H.; Huang, C.H.; Chen, H.; Su, W.Y. (2020)© 2020, Springer-Verlag GmbH Germany, part of Springer Nature. This paper combines gravity data collected from airborne, shipborne and terrestrial surveys and those derived from satellite altimetry to determine a ...