Seismic attenuation due to wave-induced fluid flow in a porous rock with spherical heterogeneities
Access Status
Authors
Date
2006Type
Metadata
Show full item recordCitation
Source Title
Faculty
School
Remarks
Copyright 2006 John Wiley & Sons, Ltd.
Please refer to the publisher for the definitive published version.
Collection
Abstract
Most natural porous rocks have heterogeneities at nearly all scales. Heterogeneities of mesoscopic scale that is, much larger than the pore size but much smaller than wavelength can cause significant attenuation and dispersion of elastic waves due to wave induced flow between more compliant and less compliant areas. Analysis of this phenomenon for a saturated porous medium with a small volume concentration of randomly distributed spherical inclusions is performed using Waterman-Truell multiple scattering theorem, which relates attenuation and dispersion to the amplitude of the wavefield scattered by a single inclusion. This scattering amplitude is computed using recently published asymptotic analytical expressions and numerical results for elastic wave scattering by a single mesoscopic poroelastic sphere in a porous medium.This analysis reveals that attenuation and dispersion exhibit a typical relaxation-type behavior with the maximum attenuation and dispersion corresponding to a frequency where fluid diffusion length (or Biot's slow wave length) is of the order of the inclusion diameter. In the limit of low volume concentration of inclusions the effective velocity is asymptotically consistent with the Gassmann theory in the low-frequency limit, and with the solution for an elastic medium with equivalent elastic inclusions (no-flow solution) in the low-frequency limit. Attenuation (expressed through inverse quality factor ) scales with frequency in the low frequency limit and with in the high frequency limit. These asymptotes are consistent with recent results on attenuation in a medium with a periodic distribution of poroelastic inclusions, and in continuous random porous media.
Related items
Showing items related by title, author, creator and subject.
-
Galvin, Robert (2007)Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
-
Ciz, Radim; Gurevich, Boris (2005)Spatial heterogeneity of hydrocarbon reservoirs causes significant attenuation and dispersion of seismic waves due to wave-induced flow of the pore fluid between more compliant to less compliant areas. This paper investigates ...
-
Brajanovski, Miroslav (2004)Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...