Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Seismic attenuation due to wave-induced fluid flow in a porous rock with spherical heterogeneities

    Access Status
    Fulltext not available
    Authors
    Ciz, Radim
    Gurevich, Boris
    Markov, M.
    Date
    2006
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ciz, R. and Gurevich, B. and Markov, M.. 2006. Seismic attenuation due to wave-induced fluid flow in a porous rock with spherical heterogeneities. Geophysical Journal International 165 (3): 957-968.
    Source Title
    Geophysical Journal International
    DOI
    10.1111/j.1365-246X.2006.02968.x
    Faculty
    Department of Exploration Geophysics
    Division of Resources and Environment
    School
    CRGC, Department of Exploration Geophysics
    Remarks

    Copyright 2006 John Wiley & Sons, Ltd.

    Please refer to the publisher for the definitive published version.

    URI
    http://hdl.handle.net/20.500.11937/12745
    Collection
    • Curtin Research Publications
    Abstract

    Most natural porous rocks have heterogeneities at nearly all scales. Heterogeneities of mesoscopic scale that is, much larger than the pore size but much smaller than wavelength can cause significant attenuation and dispersion of elastic waves due to wave induced flow between more compliant and less compliant areas. Analysis of this phenomenon for a saturated porous medium with a small volume concentration of randomly distributed spherical inclusions is performed using Waterman-Truell multiple scattering theorem, which relates attenuation and dispersion to the amplitude of the wavefield scattered by a single inclusion. This scattering amplitude is computed using recently published asymptotic analytical expressions and numerical results for elastic wave scattering by a single mesoscopic poroelastic sphere in a porous medium.This analysis reveals that attenuation and dispersion exhibit a typical relaxation-type behavior with the maximum attenuation and dispersion corresponding to a frequency where fluid diffusion length (or Biot's slow wave length) is of the order of the inclusion diameter. In the limit of low volume concentration of inclusions the effective velocity is asymptotically consistent with the Gassmann theory in the low-frequency limit, and with the solution for an elastic medium with equivalent elastic inclusions (no-flow solution) in the low-frequency limit. Attenuation (expressed through inverse quality factor ) scales with frequency in the low frequency limit and with in the high frequency limit. These asymptotes are consistent with recent results on attenuation in a medium with a periodic distribution of poroelastic inclusions, and in continuous random porous media.

    Related items

    Showing items related by title, author, creator and subject.

    • Elastic wave attenuation, dispersion and anisotropy in fractured porous media
      Galvin, Robert (2007)
      Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
    • Amplitude of Biot's slow wave scattered by a spherical inclusion in a fluid-saturated poroelastic medium
      Ciz, Radim; Gurevich, Boris (2005)
      Spatial heterogeneity of hydrocarbon reservoirs causes significant attenuation and dispersion of seismic waves due to wave-induced flow of the pore fluid between more compliant to less compliant areas. This paper investigates ...
    • Effects of fractures on seismic waves in poroelastic formations
      Brajanovski, Miroslav (2004)
      Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.