A reduction technique for generalised Riccati difference equations arising in linear-quadratic optimal control
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Remarks
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
In this paper we develop a reduction technique for the generalised Riccati difference equation arising in optimal control and optimal filtering. This technique relies on a decomposition method for the generalised Riccati difference equation that isolates its nilpotent part, which becomes constant in a number of iteration steps equal to the nilpotency index of the closed-loop, from another part that can be computed by iterating a reduced-order Riccati difference equation.
Related items
Showing items related by title, author, creator and subject.
-
Ferrante, A.; Ntogramatzidis, Lorenzo (2013)This paper proposes a reduction technique for the generalized Riccati difference equation arising in optimal control and optimal filtering. This technique relies on a study on the generalized discrete algebraic Riccati ...
-
Ferrante, A.; Ntogramatzidis, Lorenzo (2017)Three hundred years have passed since Jacopo Francesco Riccati analyzed a quadratic differential equation that would have been of crucial importance in many fields of engineering and applied mathematics. Indeed, countless ...
-
Ferrante, A.; Ntogramatzidis, Lorenzo (2014)The linear-quadratic (LQ) problem is the prototype of a large number of optimal control problems, including the fixed endpoint, the point-to-point, and several H 2/H 8 control problems, as well as the dual counterparts. ...