High performance, recoverable Fe3O4----ZnO nanoparticles for enhanced photocatalytic degradation of phenol
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
In this paper, a novel type of magnetic photocatalyst, made of Fe3O4----ZnO hybrid nanoparticles, was prepared and characterized using various analytical instruments. Upon the degradation of phenol in water, the hybrid nanoparticles demonstrated significantly enhanced photocatalytic activity, achieving a phenol degradation efficiency of 82.3%, in comparison with that of 52% by the pure ZnO nanoparticles. A reduced photoluminescence in the hybrid nanoparticles revealed the suppressing effect of the hybrid nanoparticles on the recombination of photoinduced electron–hole pairs. A hypothesized reaction mechanism was presented, showing the possible presence of free iron ions that can act as an electron-trapping site to prevent the fast recombination of photogenerated charge carriers, therefore improving the photocatalytic properties. The stability and the recoverability of the hybrid nanoparticles were also investigated. A recovering yield of 89% was achieved. The strong photocatalytic activity was well maintained after three cyclic treatments, indicating both good recoverability and high performance of the novel photocatalyst. Photocorrosion caused loss of ZnO and Fe3O4 in the recycled hybrid nanoparticles was noticeable. Whilst the loss of ZnO might have led to the reduced photoreactivity of the recycled nanoparticles, the dissolution of iron ions could be critical for the enhanced overall photocatalytic properties of Fe3O4----ZnO.
Related items
Showing items related by title, author, creator and subject.
-
Feng, Xiaohui; Lou, Xia (2015)The article reports the synthesis and characterisation of two new magnetite (Fe3O4)-supported zinc oxide (ZnO) photocatalysts, produced in the presence of Fe3O4 nanotemplates that were bound with tetramethylammonium (TMAH) ...
-
Hou, Y.; Li, Xin Yong; Zhao, Q.; Chen, G. (2013)Great efforts have been made recently to develop graphene-based visible-light-response photocatalysts and investigate their application in environmental field. In this study, a novel graphene-supported ZnFe2O4 multi-porous ...
-
Shukla, Pradeep; Wang, Shaobin; Ang, Ming; Tade, Moses (2010)Photocatalytic degradation of phenolic compounds in aqueous solution was investigated in TiO2/persulphate/UV–vis and ZnO/persulphate/UV–vis light. It is found that ZnO exhibits higher activity than TiO2 in photocatalytic ...