Global inverse optimal tracking control of underactuated omni-directional intelligent navigators (ODINs)
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper presents a design of optimal controllers with respect to a meaningful cost function to force an underactuated omni-directional intelligent navigator (ODIN) under unknown constant environmental loads to track a reference trajectory in two-dimensional space. Motivated by the vehicle’s steering practice, the yaw angle regarded as a virtual control plus the surge thrust force are used to force the position of the vehicle to globally track its reference trajectory. The control design is based on several recent results developed for inverse optimal control and stability analysis of nonlinear systems, a new design of bounded disturbance observers, and backstepping and Lyapunov’s direct methods. Both state- and output-feedback control designs are addressed. Simulations are included to illustrate the effectiveness of the proposed results.
Related items
Showing items related by title, author, creator and subject.
-
Nandong, Jobrun (2010)The vast majority of chemical and bio-chemical process plants are normally characterized by large number of measurements and relatively small number of manipulated variables; these thin plants have more output than input ...
-
Sneesby, Martin G. (1998)Reactive distillation has enormous potential for the economical synthesis of tertiary ethers. Methyl tert-butyl ether (MTBE) has been commercially produced with this technology since the early 1980s and it appears that ...
-
Kam, Kiew M. (2000)Differential geometric nonlinear control of a multiple stage evaporator system of the liquor burning facility associated with the Bayer process for alumina production at Alcoa Wagerup alumina refinery, Western Australia ...