Show simple item record

dc.contributor.authorNtogramatzidis, Lorenzo
dc.contributor.authorCantoni, Michael
dc.contributor.editorRomero G.E.
dc.contributor.editorSunyaev R.A.
dc.contributor.editorSunyaev R.A.
dc.contributor.editorBelloni T.M.
dc.date.accessioned2017-01-30T11:34:46Z
dc.date.available2017-01-30T11:34:46Z
dc.date.created2013-10-17T20:01:03Z
dc.date.issued2013
dc.identifier.citationNtogramatzidis, Lorenzo and Cantoni, Michael. 2013. Geometric techniques for implicit two-dimensional systems. Multidimensional Systems and Signal Processing. 24 (4): pp. 601-620.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/13089
dc.identifier.doi10.1007/s11045-012-0205-4
dc.description.abstract

Geometric tools are developed for two-dimensional (2-D) models in an implicitFornasini–Marchesini form. In particular, the structural properties of controlled and conditionedinvariance are defined and studied. These properties are investigated in terms ofquarter-plane causal solutions of the implicit model given compatible boundary conditions.The definitions of controlled and conditioned invariance introduced, along with the correspondingoutput-nulling and input-containing subspaces, are shown to be richer than theone-dimensional counterparts. The analysis carried out in this paper establishes necessaryand sufficient conditions for the solvability of 2-D disturbance decoupling problems andunknown-input observation problems. The conditions obtained are expressed in terms ofoutput-nulling and input-containing subspaces, which can be computed recursively in a finitenumber of steps.

dc.publisherSpringer Netherlands
dc.subjectTwo-dimensional systems
dc.subjectImplicit Fornasini–Marchesini models
dc.subjectControlled and conditioned invariance
dc.titleGeometric techniques for implicit two-dimensional systems
dc.typeJournal Article
dcterms.source.volume24
dcterms.source.number4
dcterms.source.startPage601
dcterms.source.endPage620
dcterms.source.issn0923-6082
dcterms.source.titleMultidimensional Systems and Signal Processing
curtin.note

The final publication is available at link.springer.com

curtin.department
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record