Show simple item record

dc.contributor.authorRudra, Amit
dc.contributor.authorGopalan, Raj
dc.contributor.authorAchuthan, Narasimaha
dc.date.accessioned2017-01-30T11:35:17Z
dc.date.available2017-01-30T11:35:17Z
dc.date.created2015-05-11T20:00:41Z
dc.date.issued2014
dc.identifier.citationRudra, A. and Gopalan, R. and Achuthan, N. 2014. Estimating Sufficient Sample Sizes for Approximate Decision Support Queries. In S. Hammoudi, J. Cordeiro, L.A. Maciaszek, J. Filipe (eds), Enterprise Information Systems, 85-99. Switzerland: Springer.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/13163
dc.identifier.doi10.1007/978-3-319-09492-2_6
dc.description.abstract

Sampling schemes for approximate processing of highly selective decision support queries need to retrieve sufficient number of records that can provide reliable results within acceptable error limits. The k-MDI tree is an innovative index structure that supports drawing rich samples of relevant records for a given set of dimensional attribute ranges. This paper describes a method for estimating sufficient sample sizes for decision support queries based on inverse simple random sampling without replacement (SRSWOR). Combined with a k-MDI tree index, this method is shown to offer a reliable approach to approximate query processing for decision support.

dc.publisherSpringer
dc.titleEstimating Sufficient Sample Sizes for Approximate Decision Support Queries
dc.typeBook Chapter
dcterms.source.startPage85
dcterms.source.endPage99
dcterms.source.titleEnterprise Information Systems
dcterms.source.isbn9783319094915
dcterms.source.placeSwitzerland
dcterms.source.chapter31
curtin.departmentSchool of Information Systems
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record