Show simple item record

dc.contributor.authorBlair, D.
dc.contributor.authorJu, L.
dc.contributor.authorZhao, C.
dc.contributor.authorWen, L.
dc.contributor.authorChu, Q.
dc.contributor.authorFang, Q.
dc.contributor.authorCai, R.
dc.contributor.authorGao, J.
dc.contributor.authorLin, X.
dc.contributor.authorLiu, D.
dc.contributor.authorWu, L.
dc.contributor.authorZhu, Z.
dc.contributor.authorReitze, D.
dc.contributor.authorArai, K.
dc.contributor.authorZhang, F.
dc.contributor.authorFlaminio, R.
dc.contributor.authorZhu, X.
dc.contributor.authorHobbs, G.
dc.contributor.authorManchester, R.
dc.contributor.authorShannon, Ryan
dc.contributor.authorBaccigalupi, C.
dc.contributor.authorGao, W.
dc.contributor.authorXu, P.
dc.contributor.authorBian, X.
dc.contributor.authorCao, Z.
dc.contributor.authorChang, Z.
dc.contributor.authorDong, P.
dc.contributor.authorGong, X.
dc.contributor.authorHuang, S.
dc.contributor.authorJu, P.
dc.contributor.authorLuo, Z.
dc.contributor.authorQiang, L.
dc.contributor.authorTang, W.
dc.contributor.authorWan, X.
dc.contributor.authorWang, Y.
dc.contributor.authorXu, S.
dc.contributor.authorZang, Y.
dc.contributor.authorZhang, H.
dc.contributor.authorLau, Y.
dc.contributor.authorNi, W.
dc.date.accessioned2017-01-30T11:35:37Z
dc.date.available2017-01-30T11:35:37Z
dc.date.created2016-01-11T20:00:22Z
dc.date.issued2015
dc.identifier.citationBlair, D. and Ju, L. and Zhao, C. and Wen, L. and Chu, Q. and Fang, Q. and Cai, R. et al. 2015. Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy. 58 (12): pp. 1-41.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/13227
dc.identifier.doi10.1007/s11433-015-5748-6
dc.description.abstract

In the centenary year of Einstein’s General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein’s first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1–5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry.

dc.titleGravitational wave astronomy: the current status
dc.typeJournal Article
dcterms.source.volume58
dcterms.source.number12
dcterms.source.startPage1
dcterms.source.endPage41
dcterms.source.issn1674-7348
dcterms.source.titleScience China: Physics, Mechanics and Astronomy
curtin.departmentCurtin Institute of Radio Astronomy (Physics)
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record