Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Zircons from the Acraman impact melt rock (South Australia): Shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events

    Access Status
    Fulltext not available
    Authors
    Schmieder, M.
    Tohver, E.
    Jourdan, Fred
    Denyszyn, S.
    Haines, P.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Schmieder, M. and Tohver, E. and Jourdan, F. and Denyszyn, S. and Haines, P. 2015. Zircons from the Acraman impact melt rock (South Australia): Shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events. Geochimica et Cosmochimica Acta. 161: pp. 71-100.
    Source Title
    Geochimica et Cosmochimica Acta
    DOI
    10.1016/j.gca.2015.04.021
    ISSN
    0016-7037
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/13245
    Collection
    • Curtin Research Publications
    Abstract

    This study presents the first optical and scanning electron microscopic characterization and U–Pb SHRIMP dating results for zircon grains separated from the most likely autochthonous impact melt rock in the central domain of the large, ~40–90 km eroded Ediacaran Acraman impact structure in South Australia. Microtextural characteristics define five zircon subtypes corresponding to different levels of progressive shock metamorphism, from virtually unshocked monocrystalline zircon grains that exhibit original magmatic zoning in cathodoluminescence images to fully granular zircons that have completely lost their primary zoning pattern and locally contain neocrystallized submicrometer-sized spots of ZrO2 (probably baddeleyite) that pseudomorph pre-impact zircon. The granular zircons correspond to the highest observed level of shock metamorphism and impact-induced recrystallization. ZrO2-bearing granular zircons indicate shock pressures in excess of ~65–70 GPa, which are considerably higher than previous shock pressure estimates for the Acraman impactites. U–Pb systematics of untreated and chemically abraded melt rock zircons indicate that U–Pb ratios of the Acraman zircons were variably reset during impact. Weakly shocked crystalline grains yield ages on concordia at ~1.59–1.60 Ga reflecting the magmatic age of the Gawler Range Volcanics.Only the entirely granular zircon population was apparently impact-reset, but based on an Ediacaran age from stratigraphic constraints on the ejecta layer, experienced significant post-impact Pb loss. The microcrystalline nature of granular zircons could have promoted Pb diffusion and α-recoil in post-impact time, as suggested by grain size-dependent diffusion and recoil modeling. A positive correlation of U concentration and shock level suggests that granularization might have preferentially occurred in initially U-rich, probably metamict, zircons. 40Ar/39Ar dating of a melted Yardea Dacite clast from the Acraman melt rock, as well as K-feldspar separated from shocked Yardea Dacite, resulted in post-impact alteration plateau ages suggestive of hydrothermal events at ~500 Ma and ~450 Ma that selectively affected the impactites exposed in the central domain of the Acraman impact structure. Our study demonstrates that the Acraman impact is particularly difficult to date. In the absence of accurate and precise isotopic ages for Acraman, the Ediacaran ejecta-stratigraphic age of ~635–541 Ma is considered the most reliable age constraint currently available for the timing of the large Acraman impact.

    Related items

    Showing items related by title, author, creator and subject.

    • FRIGN zircon—The only terrestrial mineral diagnostic of high-pressure and high-temperature shock deformation
      Cavosie, Aaron; Timms, Nicholas Eric; Ferriere, L.; Rochette, P. (2018)
      Minerals that record high-pressure deformation from meteorite impact are relatively common on Earth; however, minerals that record both high-pressure and high-temperature effects of impact are rare, and they occur mostly ...
    • A new U-Pb age for shock-recrystallised zircon from the Lappajärvi impact crater, Finland, and implications for the accurate dating of impact events
      Kenny, G.; Schmieder, M.; Whitehouse, M.; Nemchin, Alexander; Morales, L.; Buchner, E.; Bellucci, J.; Snape, J. (2019)
      Accurate and precise dating of terrestrial impact craters is a critical requirement for correlating impacts with events such as mass extinctions. A number of isotopic systems have been applied to impact chronology but it ...
    • Geochronological constraints on the age of a Permo–Triassic impact event: U–Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil
      Tohver, E; Lana, C; Cawood, Peter; Fletcher, Ian; Jourdan, Fred; Sherlock, Sarah; Rasmussen, Birger; Trindade, R; Yokoyama, E; Souza-Filho, C; Marangoni, Y (2012)
      Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.