Pipeline failures in corrosive environments - A conceptual analysis of trends and effects
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2015 Elsevier Ltd. Pipeline corrosion is a major challenge facing many oil and gas industries today because of the enormous downtime associated with corrosion related failures. Fatigue stress initiation in pipelines has been attributed to corrosion defects whose growth is enhanced by cyclic loading caused by the operating pressure of the transported fluids. This work reviews the concept of oil and gas transmission pipeline failures in corrosive environment by highlighting the corrosion mechanisms, dominant stress corrosion cracking trends, hydrogen induced cracking and predominant models for burst pressure estimation. Fatigue stress failure trends of corroding pipelines were also explained whilst describing some pipeline manufacturing processes that increases the susceptibility to fatigue stress failure. Optimization framework for pipeline integrity assurance against corrosion fatigue failures was also shown to incorporate different steps that includes - strategic policy initiation, policy implementation, information analysis and reviews and implementation actions.
Related items
Showing items related by title, author, creator and subject.
-
Magnetite and its galvanic effect on the corrosion of carbon steel under carbon dioxide environmentsChan, Emilyn Wai Lyn (2011)Carbon dioxide corrosion, which can cause premature failure of oil and gas pipelines, is an imperative health, safety and environmental issue in the oil and gas industry. Extensive studies have been conducted to understand ...
-
Ossai, C.; Boswell, Brian; Davies, Ian (2016)For effective integrity management, the reliabilities at times of exposure of pipelines to corrosive environment need to be understood. This paper described the procedure for using Markov modelling and Monte Carlo simulation ...
-
Obanijesu, Emmanuel Ogo-Oluwa (2012)Gas industry annually invests millions of dollars on corrosion inhibitors in order to minimize corrosion implications on flow assurance; however, attention has never been focused on possibilities of these chemicals to ...