Hydrogen cycling in γ-Mg(BH4)2 with cobalt-based additives
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Magnesium borohydride (Mg(BH4)2) is an attractive candidate as a hydrogen storage material due to its high hydrogen content and predicted favorable thermodynamics. In this work we demonstrate reversible hydrogen desorption in partially decomposed Mg(BH4)2 which was ball milled together with 2 mol% Co-based additives. Powder X-ray diffraction and infrared spectroscopy showed that after partial decomposition at 285 °C, amorphous boron-hydride compounds were formed. Rehydrogenation at equivalent temperatures and hydrogen pressures of 120 bar yielded the formation of crystalline Mg(BH4)2 in the first cycle, and amorphous Mg(BH4)2 with other boron–hydrogen compounds upon the third H2 absorption. Reversibility was observed in the samples with and without Co-based additives, although the additives enhanced hydrogen desorption kinetics in the first cycle. X-ray absorption spectroscopy at Co K-edge revealed that all the additives, apart from Co2B, reacted during the first desorption to form new stable species.
Related items
Showing items related by title, author, creator and subject.
-
Saldan, I.; Hino, S.; Humphries, Terry; Zavorotynska, O.; Chong, M.; Jensen, C.; Deledda, S.; Hauback, B. (2014)The decomposition and rehydrogenation of ?-Mg(BH4)2 ball milled together with 2 mol % of Ni-based additives, Ninano, NiCl2, NiF2, and Ni3B, has been investigated during one hydrogen desorption-absorption cycle. Under the ...
-
Paskevicius, Mark; Pitt, M.; Webb, C.; Sheppard, Drew; Filso, U.; Gray, E.; Buckley, Craig (2012)We have studied the complex decomposition mechanism of cubic γ-Mg(BH4)2 (Ia3̅d, a = 15.7858(1) Å) by in-situ synchrotron X-ray diffraction, temperature-programmed desorption, visual observation of the melt, and Fourier ...
-
Jepsen, L.; Ban, V.; Moller, Kasper; Lee, Y.; Cho, Y.; Besenbacher, F.; Filinchuk, Y.; Skibsted, J.; Jensen, T. (2014)A metal borohydride-ammonia borane complex, Mg(BH4) 2(NH3BH3)2 was synthesized via a solid-state reaction between Mg(BH4)2 and NH 3BH3. Different mechanochemical reaction mechanisms are observed, since Mg(BH4)2(NH3BH 3)2 ...