Show simple item record

dc.contributor.authorDe La Pierre, Marco
dc.contributor.authorOrlando, R.
dc.contributor.authorFerrabone, M.
dc.contributor.authorZicovich-Wilson, C.
dc.contributor.authorDovesi, R.
dc.identifier.citationDe La Pierre, M. and Orlando, R. and Ferrabone, M. and Zicovich-Wilson, C. and Dovesi, R. 2014. Exploitation of symmetry in periodic Self-Consistent-Field ab initio calculations: application to large three-dimensional compounds. Science China Chemistry. 57 (10): pp. 1418-1426.

Symmetry can dramatically reduce the computational cost (running time and memory allocation) of Self-Consistent-Field ab initio calculations for crystalline systems. Crucial for running time is use of symmetry in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices (overlap, Fock and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation from the packed AO to the SACO (Symmetry Adapted Crystalline Orbital) basis is performed, so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. We here illustrate the effectiveness of this scheme, following recent advancements in the CRYSTAL code, concerning memory allocation and direct basis set transformation. Quantitative examples are given for large unit cell systems, such as zeolites (all-silica faujasite and silicalite MFI) and garnets (pyrope). It is shown that the full SCF of 3D systems containing up to 576 atoms and 11136 Atomic Orbitals in the cell can be run with a hybrid functional on a single core PC with 500 MB RAM in about 8 h. © 2014 Science China Press and Springer-Verlag Berlin Heidelberg.

dc.titleExploitation of symmetry in periodic Self-Consistent-Field ab initio calculations: application to large three-dimensional compounds
dc.typeJournal Article
dcterms.source.titleScience China Chemistry

The final publication is available at Springer via

curtin.departmentNanochemistry Research Institute
curtin.accessStatusOpen access

Files in this item


This item appears in the following Collection(s)

Show simple item record