Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Numerical simulation for the determination of hydraulic fracture initiation and breakdown pressure using distinct element method

    239982.pdf (2.449Mb)
    Access Status
    Open access
    Authors
    Fatahi, Hassan
    Hossain, Mofazzal
    Fallahzadeh, Seyed
    Mostofi, Masood
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Fatahi, H. and Hossain, M. and Fallahzadeh, S. and Mostofi, M. 2016. Numerical simulation for the determination of hydraulic fracture initiation and breakdown pressure using distinct element method. Journal of Natural Gas Science and Engineering. 33: pp. 1219-1232.
    Source Title
    Journal of Natural Gas Science and Engineering
    DOI
    10.1016/j.jngse.2016.03.029
    ISSN
    1875-5100
    School
    Department of Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/13794
    Collection
    • Curtin Research Publications
    Abstract

    Hydraulic fracturing technique has been widely used in many cases to enhance well production performance. In particular, this technology is proven to be the most viable technique for the oil and gas production from unconventional reservoirs. Accurate prediction of fracture initiation and breakdown pressure is vital for successful design of Hydraulic Fracturing operation. Methods of predicting these pressures include analytical analysis, field experiments, laboratory experiments and numerical simulations. Despite great achievements in the area of analytical analysis, they often failed to represent the true reservoir case, and consequently are found to be erroneous. Field tests such as mini-frac test are the best method for prediction of initiation and breakdown pressure. However these tests are very limited due to their costs and are not very suitable for sensitivity analysis. Controlled laboratory tests seem to be the best option for predicting initiation and breakdown pressures. Test parameters such as fracturing fluid properties and principal stresses can be controlled with great precision to achieve accurate results. However, same as field tests, laboratory experiments are expensive. Core samples are limited and are expensive. Coring operation can take 4-5 days of rig time to take a 90 ft core. Geo-mechanical tests can take up to three days of a laboratory technician's time per sample. Consequently, this will limit the number of tests to be done, and as a result it causes limitations on the conclusions that can be drawn from these tests. Simulation studies on the other hand do not have these limitations and can be used for as many times as desired to perform sensitivity analysis.This paper presents a simulation model that is based on distinct element method. It is used to study the fracture initiation and breakdown pressure during hydraulic fracturing tests. The accuracy of the model was justified through comparison between laboratory experiments and numerical simulation. Four sandstone samples from two different sandstone types and a synthetic cement sample were used in the experimental studies. The tests were performed in True Tri-axial Stress Cell (TTC) with the capability to inject fluid into the samples. Simulation results demonstrate good agreement with experimental results. Fracture propagation path was found to be very similar. Fractures propagated in the direction of maximum horizontal stress.

    Related items

    Showing items related by title, author, creator and subject.

    • Active monitoring of a hydraulic fracture propagation: Experimental and numerical study
      Nabipour, Amin; Evans, Brian; Sarmadivaleh, Mohammad (2011)
      Hydraulic fracturing is known as one of the most common stimulation techniques performed on oil and gas wells for maximising hydrocarbon production. It is a complex procedure due to numerous influencing factors associated ...
    • Hydraulic fracturing experiments in tight formations
      Rasouli, Vamegh (2011)
      Hydraulic fracturing is perhaps the major stimulation technique which is used to enhance production in low permeability reservoirs and also in unconventional resources such as tight formations, shale gas ...
    • Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture
      Fatahi, Hassan; Hossain, Mofazzal; Sarmadivaleh, Mohammad (2017)
      Hydraulic fracturing is extensively used to develop unconventional reservoirs, such as tight gas, shale gas and shale oil reservoirs. These reservoirs are often naturally fractured. Presence of these natural fractures can ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.