Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Carbon Dioxide Adsorption-Induced Deformation of Microporous Carbons

    Access Status
    Fulltext not available
    Authors
    Kowalczyk, Piotr
    Furmaniak, S.
    Gauden, P.
    Terzyk, A.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kowalczyk, Piotr and Furmaniak, Sylwester and Gauden, Piotr A. and Terzyk, Artur P. 2010. Carbon Dioxide Adsorption-Induced Deformation of Microporous Carbons. Journal of Physical Chemistry C. 114 (11): pp. 5126-5133.
    Source Title
    Journal of Physical Chemistry C
    DOI
    10.1021/jp911996h
    ISSN
    1932-7447
    School
    Department of Applied Chemistry
    URI
    http://hdl.handle.net/20.500.11937/14029
    Collection
    • Curtin Research Publications
    Abstract

    Applying the thermodynamic model of adsorption-induced deformation of microporous carbons developed recently (Kowalczyk, P.; Ciach, A.; Neimark, A. Langmuir 2008, 24, 6603), we study the deformation of carbonaceous amorphous porous materials due to adsorption of carbon dioxide at 333 K and pressures up to 27 MPa. The internal adsorption stress induced by adsorbed/compressed carbon dioxide is very high in the smallest ultramicropores (for instance, solvation pressure in 0.23 nm ultramicropore reaches 3.2 GPa at 27 MPa). Model calculations show that any sample of carbonaceous porous solid containing a fraction of the smallest ultramicropores with pore size below 0.31 nm will expand at studied operating conditions. This is because the high internal adsorption stress in ultramicropores dominates sample deformation upon adsorption of carbon dioxide at studied operation conditions. Interestingly, the nonmonotonic deformation (i.e., initial contraction and further expansion) of the above mentioned porous materials upon adsorption of carbon dioxide at 333 K is also theoretically predicted. Our calculations reproduce quantitatively the strain isotherm of carbon dioxide on carbide-derived activated carbon at 333 K and experimental pressures up to 2.9 MPa. Moreover, we extrapolate adsorption and strain isotherms measured by the gravimetric/dilatometric method up to 27 MPa to mimic geosequestration operating conditions. And so, we predict that expansion of the studied carbon sample reaches 0.75% at 27 MPa and 333 K. Presented simulation results can be useful for the interpretation of the coal deformation upon sequestration of carbon dioxide at high pressures and temperatures.

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Capture of carbon dioxide in metal organic frameworks
      Abid, Hussein Rasool (2012)
      This scholarly research investigates synthesis of different Zr-MOFs and some of Al- MOFs and studies their charcateristics and applications in capture or separation of carbon dioxide. CO2 is consdered as a main gas in ...
    • Methane adsorption capacity of shale samples from Western Australia
      Zou, Jie ; Rezaee, Reza (2020)
      To examine the influence of clay minerals on methane adsorption in shales, shale samples with low total organic carbon (TOC), ranging from 0.23 to 3.2 wt%, were collected from the Canning and Perth basins, Western Australia. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.