Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Efficient duration modelling in the hierarchical hidden semi-Markov models and their applications

    18610_Duong2008.pdf (2.399Mb)
    Access Status
    Open access
    Authors
    Duong, Thi V. T.
    Date
    2008
    Supervisor
    Prof. Svetha Venkatesh
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    Dept. of Computing
    URI
    http://hdl.handle.net/20.500.11937/1408
    Collection
    • Curtin Theses
    Abstract

    Modeling patterns in temporal data has arisen as an important problem in engineering and science. This has led to the popularity of several dynamic models, in particular the renowned hidden Markov model (HMM) [Rabiner, 1989]. Despite its widespread success in many cases, the standard HMM often fails to model more complex data whose elements are correlated hierarchically or over a long period. Such problems are, however, frequently encountered in practice. Existing efforts to overcome this weakness often address either one of these two aspects separately, mainly due to computational intractability. Motivated by this modeling challenge in many real world problems, in particular, for video surveillance and segmentation, this thesis aims to develop tractable probabilistic models that can jointly model duration and hierarchical information in a unified framework. We believe that jointly exploiting statistical strength from both properties will lead to more accurate and robust models for the needed task. To tackle the modeling aspect, we base our work on an intersection between dynamic graphical models and statistics of lifetime modeling. Realizing that the key bottleneck found in the existing works lies in the choice of the distribution for a state, we have successfully integrated the discrete Coxian distribution [Cox, 1955], a special class of phase-type distributions, into the HMM to form a novel and powerful stochastic model termed as the Coxian Hidden Semi-Markov Model (CxHSMM). We show that this model can still be expressed as a dynamic Bayesian network, and inference and learning can be derived analytically.Most importantly, it has four superior features over existing semi-Markov modelling: the parameter space is compact, computation is fast (almost the same as the HMM), close-formed estimation can be derived, and the Coxian is flexible enough to approximate a large class of distributions. Next, we exploit hierarchical decomposition in the data by borrowing analogy from the hierarchical hidden Markov model in [Fine et al., 1998, Bui et al., 2004] and introduce a new type of shallow structured graphical model that combines both duration and hierarchical modelling into a unified framework, termed the Coxian Switching Hidden Semi-Markov Models (CxSHSMM). The top layer is a Markov sequence of switching variables, while the bottom layer is a sequence of concatenated CxHSMMs whose parameters are determined by the switching variable at the top. Again, we provide a thorough analysis along with inference and learning machinery. We also show that semi-Markov models with arbitrary depth structure can easily be developed. In all cases we further address two practical issues: missing observations to unstable tracking and the use of partially labelled data to improve training accuracy. Motivated by real-world problems, our application contribution is a framework to recognize complex activities of daily livings (ADLs) and detect anomalies to provide better intelligent caring services for the elderly.Coarser activities with self duration distributions are represented using the CxHSMM. Complex activities are made of a sequence of coarser activities and represented at the top level in the CxSHSMM. Intensive experiments are conducted to evaluate our solutions against existing methods. In many cases, the superiority of the joint modeling and the Coxian parameterization over traditional methods is confirmed. The robustness of our proposed models is further demonstrated in a series of more challenging experiments, in which the tracking is often lost and activities considerably overlap. Our final contribution is an application of the switching Coxian model to segment education-oriented videos into coherent topical units. Our results again demonstrate such segmentation processes can benefit greatly from the joint modeling of duration and hierarchy.

    Related items

    Showing items related by title, author, creator and subject.

    • Efficient duration and hierarchical modeling for human activity recognition
      Duong, Thi; Phung, Dinh; Bui, Hung H.; Venkatesh, Svetha (2009)
      A challenge in building pervasive and smart spaces is to learn and recognize human activities of daily living (ADLs). In this paper, we address this problem and argue that in dealing with ADLs, it is beneficial to exploit ...
    • Activity recognition and abnormality detection with the switching hidden semi-Markov model
      Duong, Thi; Bui, Hung H.; Phung, Dinh; Venkatesh, Svetha (2005)
      This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which isan important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that ...
    • Topic transition detection using hierarchical hidden Markov and semi-Markov models
      Phung, Dinh; Venkatesh, Svetha; Duong, Thi; Bui, Hung H. (2005)
      In this paper we introduce a probabilistic framework to exploit hierarchy, structure sharing and duration information for topic transition detection in videos. Our probabilistic detection framework is a combination of a ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.