Show simple item record

dc.contributor.authorDuong, Thi V. T.
dc.contributor.supervisorProf. Svetha Venkatesh

Modeling patterns in temporal data has arisen as an important problem in engineering and science. This has led to the popularity of several dynamic models, in particular the renowned hidden Markov model (HMM) [Rabiner, 1989]. Despite its widespread success in many cases, the standard HMM often fails to model more complex data whose elements are correlated hierarchically or over a long period. Such problems are, however, frequently encountered in practice. Existing efforts to overcome this weakness often address either one of these two aspects separately, mainly due to computational intractability. Motivated by this modeling challenge in many real world problems, in particular, for video surveillance and segmentation, this thesis aims to develop tractable probabilistic models that can jointly model duration and hierarchical information in a unified framework. We believe that jointly exploiting statistical strength from both properties will lead to more accurate and robust models for the needed task. To tackle the modeling aspect, we base our work on an intersection between dynamic graphical models and statistics of lifetime modeling. Realizing that the key bottleneck found in the existing works lies in the choice of the distribution for a state, we have successfully integrated the discrete Coxian distribution [Cox, 1955], a special class of phase-type distributions, into the HMM to form a novel and powerful stochastic model termed as the Coxian Hidden Semi-Markov Model (CxHSMM). We show that this model can still be expressed as a dynamic Bayesian network, and inference and learning can be derived analytically.Most importantly, it has four superior features over existing semi-Markov modelling: the parameter space is compact, computation is fast (almost the same as the HMM), close-formed estimation can be derived, and the Coxian is flexible enough to approximate a large class of distributions. Next, we exploit hierarchical decomposition in the data by borrowing analogy from the hierarchical hidden Markov model in [Fine et al., 1998, Bui et al., 2004] and introduce a new type of shallow structured graphical model that combines both duration and hierarchical modelling into a unified framework, termed the Coxian Switching Hidden Semi-Markov Models (CxSHSMM). The top layer is a Markov sequence of switching variables, while the bottom layer is a sequence of concatenated CxHSMMs whose parameters are determined by the switching variable at the top. Again, we provide a thorough analysis along with inference and learning machinery. We also show that semi-Markov models with arbitrary depth structure can easily be developed. In all cases we further address two practical issues: missing observations to unstable tracking and the use of partially labelled data to improve training accuracy. Motivated by real-world problems, our application contribution is a framework to recognize complex activities of daily livings (ADLs) and detect anomalies to provide better intelligent caring services for the elderly.Coarser activities with self duration distributions are represented using the CxHSMM. Complex activities are made of a sequence of coarser activities and represented at the top level in the CxSHSMM. Intensive experiments are conducted to evaluate our solutions against existing methods. In many cases, the superiority of the joint modeling and the Coxian parameterization over traditional methods is confirmed. The robustness of our proposed models is further demonstrated in a series of more challenging experiments, in which the tracking is often lost and activities considerably overlap. Our final contribution is an application of the switching Coxian model to segment education-oriented videos into coherent topical units. Our results again demonstrate such segmentation processes can benefit greatly from the joint modeling of duration and hierarchy.

dc.publisherCurtin University
dc.subjecthidden Markov model (HMM)
dc.subjectunified framework
dc.subjectcomplex data
dc.subjectduration and hierarchical information
dc.subjecttemporal data
dc.subjectmodeling patterns
dc.titleEfficient duration modelling in the hierarchical hidden semi-Markov models and their applications
curtin.departmentDept. of Computing
curtin.accessStatusOpen access

Files in this item


This item appears in the following Collection(s)

Show simple item record