Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa

    Access Status
    Fulltext not available
    Authors
    Johnson, Tim
    Brown, M.
    White, R.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Johnson, T. and Brown, M. and White, R. 2010. Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa. Journal of Metamorphic Geology. 28: pp. 269-291.
    Source Title
    Journal of Metamorphic Geology
    ISSN
    0263-4929
    URI
    http://hdl.handle.net/20.500.11937/14150
    Collection
    • Curtin Research Publications
    Abstract

    Xenoliths of quartz-absent Fe-rich aluminous metapelite are common within the platinum group element-rich mafic/ultramafic magmatic rocks of the Platreef. Relative to well-characterized protoliths, the xenoliths are strongly depleted in K2O and H2O, and have lost a substantial amount of melt (>50 vol.%). Mineral equilibria calculations in the NCKFMASHTO system yield results that are consistent with observations in natural samples. Lower-grade rocks that lack staurolite constrain peak pressures to ~2.5 kbar in the southern Platreef. Smaller xenoliths and the margins of larger xenoliths comprise micro-diatexite rich in coarse acicular corundum and spinel, which record evidence for the metastable persistence of lower-grade hydrous phases and rapid melting consequent on a temperature overstep of several hundred degrees following their incorporation in the mafic/ultramafic magmas. In the cores of larger xenoliths, temperatures increased more slowly enabling progressive metamorphism by continuous prograde equilibration and the loss of H2O by subsolidus dehydration; the H2O migrated to xenolith margins where it may have promoted increased melting. According to variations in the original compositional layering, layers became aluminosilicate- and/or cordierite-rich, commonly with spinel but only rarely with corundum. The differing mineralogical and microstructural evolution of the xenoliths depends on heating rates (governed by their size and, therefore, proximity to the Platreef magmas) and the pre-intrusive metamorphic grade of the protoliths. The presence or absence of certain phases, particularly corundum, is strongly influenced by the degree of metastable retention of lower-grade hydrates in otherwise identical protolith bulk compositions. The preservation of fine-scale compositional layering that is inferred to be relict bedding in xenolith cores implies that melt loss by compaction was extremely efficient.

    Related items

    Showing items related by title, author, creator and subject.

    • A year in the life of an aluminous metapelite xenolith—The role of heating rates, reaction overstep, H2O retention and melt loss
      Johnson, Tim; White, R.; Brown, M. (2011)
      Xenoliths of aluminous metapelite within the Platreef magmatic rocks of the Bushveld Complex, South Africa, are mineralogically and texturally zoned, with coarse-grained margins rich in acicular corundum, spinel and ...
    • Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust
      Wang, R.; Collins, Bill; Weinberg, R.; Li, J.; Li, Q.; He, W.; Richards, J.; Hou, Z.; Zhou, L.; Stern, R. (2016)
      Felsic granulite xenoliths entrained in Miocene (~13 Ma) isotopically evolved, mantle-derived ultrapotassic volcanic (UPV) dykes in southern Tibet are refractory meta-granitoids with garnet and rutile in a near-anhydrous ...
    • Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite
      Ionov, D.; Doucet, Luc; Xu, Y.; Golovin, A.; Oleinikov, O. (2018)
      The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.