Pseudomorphic replacement of single calcium carbonate crystals by polycrystalline apatite
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
During chemical weathering and natural hydrothermal reactions, apatite can form by replacing calcium carbonates. In hydrothermal experiments in which aragonite and calcite single crystals have been reacted with phosphate solutions, the carbonates are replaced by polycrystalline hydroxylapatite (HAP). In both cases the crystals have retained their overall morphology while their compositions have changed significantly. The HAP appears to have a crystallographic relationship to the parent carbonate crystals. The textural relationships are consistent with an interface-coupled dissolution-precipitation mechanism. Structural relationships and relative molar volumes and solubilities appear to be factors that greatly affect replacement reactions. © 2008 The Mineralogical Society.
Related items
Showing items related by title, author, creator and subject.
-
Pearce, M.; Timms, Nicholas Eric; Hough, R.; Cleverley, J. (2013)Carbonate reactions are common in mineral deposits due to CO2-rich mineralising fluids. This study presents the first in-depth, integrated analysis of microstructure and microchemistry of fluid-mediated carbonate reaction ...
-
Perdikouri, C.; Kasioptas, A.; Geisler, T.; Schmidt, B.; Putnis, Andrew (2011)The experimental replacement of aragonite by calcite was studied under hydrothermal conditions at temperatures between 160 and 200 °C using single inorganic aragonite crystals as a starting material. The initial saturation ...
-
Fleming, David Elliot (2004)The broad aim of the work presented in this thesis was to examine the relationship between the mineral and organic phases of calcium oxalate monohydrate (COM) crystals, which are the principal components of human kidney ...