Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A new method to image heme-Fe, total Fe, and aggregated protein levels after intracerebral hemorrhage

    Access Status
    Fulltext not available
    Authors
    Hackett, Mark
    Desouza, M.
    Caine, S.
    Bewer, B.
    Nichol, H.
    Paterson, P.
    Colbourne, F.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Hackett, M. and Desouza, M. and Caine, S. and Bewer, B. and Nichol, H. and Paterson, P. and Colbourne, F. 2015. A new method to image heme-Fe, total Fe, and aggregated protein levels after intracerebral hemorrhage. ACS Chemical Neuroscience. 6 (5): pp. 761-770.
    Source Title
    ACS Chemical Neuroscience
    DOI
    10.1021/acschemneuro.5b00037
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/14226
    Collection
    • Curtin Research Publications
    Abstract

    © 2015 American Chemical Society.An intracerebral hemorrhage (ICH) is a devastating stroke that results in high mortality and significant disability in survivors. Unfortunately, the underlying mechanisms of this injury are not yet fully understood. After the primary (mechanical) trauma, secondary degenerative events contribute to ongoing cell death in the peri-hematoma region. Oxidative stress is thought to be a key reason for this delayed injury, which is likely due to free-Fe-catalyzed free radical reactions. Unfortunately, this is difficult to prove with conventional biochemical assays that fail to differentiate between alterations that occur within the hematoma and peri-hematoma zone. This is a critical limitation, as the hematoma contains tissue severely damaged by the initial hemorrhage and is unsalvageable, whereas the peri-hematoma region is less damaged but at risk from secondary degenerative events. Such events include oxidative stress mediated by free Fe presumed to originate from hemoglobin breakdown. Therefore, minimizing the damage caused by oxidative stress following hemoglobin breakdown and Fe release is a major therapeutic target. However, the extent to which free Fe contributes to the pathogenesis of ICH remains unknown. This investigation used a novel imaging approach that employed resonance Raman spectroscopic mapping of hemoglobin, X-ray fluorescence microscopic mapping of total Fe, and Fourier transform infrared spectroscopic imaging of aggregated protein following ICH in rats. This multimodal spectroscopic approach was used to accurately define the hematoma/peri-hematoma boundary and quantify the Fe concentration and the relative aggregated protein content, as a marker of oxidative stress, within each region. The results revealed total Fe is substantially increased in the hematoma (0.90 µg cm<sup>-2</sup>), and a subtle but significant increase in Fe that is not in the chemical form of hemoglobin is present within the peri-hematoma zone (0.32 µg cm<sup>-2</sup>) within 1 day of ICH, relative to sham animals (0.22 µg cm<sup>-2</sup>). Levels of aggregated protein were significantly increased within both the hematoma (integrated band area 0.10 AU) and peri-hematoma zone (integrated band area 0.10 AU) relative to sham animals (integrated band area 0.056 AU), but no significant difference in aggregated protein content was observed between the hematoma and peri-hematoma zone. This result suggests that the chemical form of Fe and its ability to generate free radicals is likely to be a more critical predictor of tissue damage than the total Fe content of the tissue. Furthermore, this article describes a novel approach to colocalize nonheme Fe and aggregated protein in the peri-hematoma zone following ICH, a significant methodological advancement for the field.

    Related items

    Showing items related by title, author, creator and subject.

    • Rehabilitation augments hematoma clearance and attenuates oxidative injury and ion dyshomeostasis after brain hemorrhage
      Williamson, M.; Dietrich, K.; Hackett, Mark; Caine, S.; Nadeau, C.; Aziz, J.; Nichol, H.; Paterson, P.; Colbourne, F. (2017)
      © 2016 American Heart Association, Inc.Background and Purpose - We assessed the elemental and biochemical effects of rehabilitation after intracerebral hemorrhage, with emphasis on iron-mediated oxidative stress, using a ...
    • Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat
      Hackett, Mark; Smith, S.; Caine, S.; Nichol, H.; George, G.; Pickering, I.; Paterson, P. (2015)
      Global brain ischemia resulting from cardiac arrest and cardiac surgery can lead to permanent brain damage and mental impairment. A clinical hallmark of global brain ischemia is delayed neurodegeneration, particularly ...
    • FTIR studies of the similarities between pathology induced protein aggregation in vivo and chemically induced protein aggregation ex vivo
      Tidy, R.; Lam, V.; Fimognari, N.; Mamo, John; Hackett, M. (2016)
      © 2016 Elsevier B.V.Fourier transform infrared (FTIR) spectroscopy has been well documented to discriminate between protein secondary structures, at the micron scale. This capability has enabled in situ localization of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.